Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The Euler approximation in state constrained optimal control


Authors: A. L. Dontchev and William W. Hager
Journal: Math. Comp. 70 (2001), 173-203
MSC (2000): Primary 49M25, 65L10, 65L70, 65K10
DOI: https://doi.org/10.1090/S0025-5718-00-01184-4
Published electronically: April 13, 2000
MathSciNet review: 1681116
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We analyze the Euler approximation to a state constrained control problem. We show that if the active constraints satisfy an independence condition and the Lagrangian satisfies a coercivity condition, then locally there exists a solution to the Euler discretization, and the error is bounded by a constant times the mesh size. The proof couples recent stability results for state constrained control problems with results established here on discrete-time regularity. The analysis utilizes mappings of the discrete variables into continuous spaces where classical finite element estimates can be invoked.


References [Enhancements On Off] (What's this?)

  • 1. D. P. BERTSEKAS, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.
  • 2. W. E. BOSARGE, JR. AND O. G. JOHNSON, Error bounds of high order accuracy for the state regulator problem via piecewise polynomial approximations, SIAM J. Control, 9 (1971), pp. 15-28. MR 44:6374
  • 3. W. E. BOSARGE, JR., O. G. JOHNSON, R. S. MCKNIGHT, AND W. P. TIMLAKE, The Ritz-Galerkin procedure for nonlinear control problems, SIAM J. Numer. Anal., 10 (1973), pp. 94-111. MR 47:9827
  • 4. S. C. BRENNER AND L. R. SCOTT, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994. MR 95f:65001
  • 5. B. M. BUDAK, E. M. BERKOVICH AND E. N. SOLOV'EVA, Difference approximations in optimal control problems, SIAM J. Control, 7 (1969), pp. 18-31. MR 39:4721
  • 6. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 58:25001
  • 7. J. CULLUM, Discrete approximations to continuous optimal control problems, SIAM J. Control, 7 (1969), pp. 32-49. MR 42:2341
  • 8. J. CULLUM, An explicit procedure for discretizing continuous, optimal control problems, J. Optimization Theory Appl., 8 (1971), pp. 15-34. MR 46:1029
  • 9. J. CULLUM, Finite-dimensional approximations of state-constrained continuous optimal control problems, SIAM J. Control, 10 (1972), pp. 649-670. MR 56:11284
  • 10. J. W. DANIEL, On the approximate minimization of functionals, Math. Comp., 23 (1969), pp. 573-581. MR 40:1007
  • 11. J. W. DANIEL, On the convergence of a numerical method in optimal control, J. Optimization Theory Appl., 4 (1969), pp. 330-342. MR 40:5120
  • 12. J. W. DANIEL, The Ritz-Galerkin method for abstract optimal control problems, SIAM J. Control, 11 (1973), pp. 53-63. MR 48:1003
  • 13. J. W. DANIEL, The Approximate Minimization of Functionals, Wiley-Interscience, New York 1983.
  • 14. A. L. DONTCHEV, Error estimates for a discrete approximation to constrained control problems, SIAM J. Numer. Anal., 18 (1981), pp. 500-514. MR 83a:49049
  • 15. A. L. DONTCHEV, Perturbations, approximations and sensitivity analysis of optimal control systems, Lecture Notes in Control and Inf. Sc., 52, Springer, New York, 1983. MR 86m:49003
  • 16. A. L. DONTCHEV, Discrete approximations in optimal control, in Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control (Minneapolis, MN, 1993), IMA Vol. Math. Appl., 78, Springer, New York, 1996, pp. 59-81. MR 97h:49043
  • 17. A. L. DONTCHEV, An a priori estimate for discrete approximations in nonlinear optimal control, SIAM J. Control Optim., 34 (1996), pp. 1315-1328. MR 97d:49034
  • 18. A. L. DONTCHEV AND W. W. HAGER, Lipschitzian stability in nonlinear control and optimization, SIAM J. Control Optim., 31 (1993), pp. 569-603. MR 94d:49041
  • 19. A. L. DONTCHEV AND W. W. HAGER, Lipschitzian stability for state constrained nonlinear optimal control, SIAM J. Control Optim., 36 (1998), pp. 696-718. MR 99b:49029
  • 20. A. L. DONTCHEV AND W. W. HAGER, A new approach to Lipschitz continuity in state constrained optimal control, Systems and Control Letters, 35 (1998), pp. 137-143.
  • 21. A. L. DONTCHEV, W. W. HAGER, AND V. M. VELIOV, Second-order Runge-Kutta approximations in constrained optimal control, Department of Mathematics, University of Florida, Gainesville, FL 32611, Dec 29, 1998 (http://www. math.ufl.edu/$\tilde{ }$hager/papers/rk2.ps).
  • 22. A. L. DONTCHEV, W. W. HAGER, A. B. POORE, B. YANG, Optimality, stability and convergence in nonlinear control, Appl. Math. Optim., 31 (1995), pp. 297-326. MR 95k:49050
  • 23. J. C. DUNN, On $L\sp 2$ sufficient conditions and the gradient projection method for optimal control problems, SIAM J. Control Optim., 34 (1996), pp. 1270-1290. MR 97d:49033
  • 24. E. FARHI, Runge-Kutta schemes applied to linear-quadratic optimal control problems, in Mathematics and mathematical education (Sunny Beach 1984), Bulg. Acad. Sc., Sofia, 1984, pp. 464-472. MR 85e:00015
  • 25. W. W. HAGER, The Ritz-Trefftz method for state and control constrained optimal control problems, SIAM J. Numer. Anal., 12 (1975), pp. 854-867. MR 54:3550
  • 26. W. W. HAGER, Rate of convergence for discrete approximations to unconstrained control problems, SIAM J. Numer. Anal., 13 (1976), pp. 449-471. MR 58:18058
  • 27. W. W. HAGER, Convex control and dual approximations, Control and Cybernetics, 8 (1979), pp. 1-22, 73-86. MR 83b:49024a, MR 83b:49024b
  • 28. W. W. HAGER, Lipschitz continuity for constrained processes, SIAM J. Control Optim., 17 (1979), pp. 321-337. MR 80d:49022
  • 29. W. W. HAGER, Runge-Kutta methods in optimal control and the transformed adjoint system, Department of Mathematics, University of Florida, Gainesville, FL 32611, January 4, 1999 (http://www.math.ufl.edu/$\tilde{ }$hager/papers/rk.ps).
  • 30. W. W. HAGER AND G. D. IANCULESCU, Dual approximations in optimal control, SIAM J. Control Optim., 22 (1984), pp. 423-465. MR 86c:49019
  • 31. R. F. HARTL, S. P. SETHI, R. G. VICKSON, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), pp. 181-218. MR 96j:49019
  • 32. K. MALANOWSKI, C. B¨USKENS, AND H. MAURER, Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, Ed. A. V. Fiacco, Lecture Notes in Pure and Appl. Math, vol. 195, Marcel Dekker, New York, 1997, pp. 253-284. MR 98f:49033
  • 33. B. MORDUKHOVICH, On difference approximations of optimal control systems, J. Appl. Math. Mech., 42 (1978), pp. 452-461. MR 84i:49064
  • 34. E. POLAK, A historical survey of computations methods in optimal control, SIAM Review, 15 (1973), pp. 553-548. MR 53:1956
  • 35. E. POLAK, Optimization: Algorithms and Consistent Approximation, Springer, New York, 1997. MR 98g:49001
  • 36. A. L. SCHWARTZ AND E. POLAK, Consistent approximations for optimal control problems based on Runge-Kutta integration, SIAM J. Control Optim., 34 (1996), pp. 1235-1269. MR 97h:49045
  • 37. G. STRANG AND G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973. Republished by Wellesley-Cambridge Press, Wellesley, MA, 1997. MR 56:1747
  • 38. V. VELIOV, On the time-discretization of control systems, SIAM J. Control Optim., 35 (1997), pp. 1470-1486. MR 98f:49034
  • 39. S. E. WRIGHT, Consistency of primal-dual approximations for convex optimal control problems, SIAM J. Control Optim., 33 (1995), pp. 1489-1509. MR 96h:49057
  • 40. V. ZEIDAN, Sufficient conditions for variational problems with variable endpoints: coupled points, Appl. Math. Optim., 27 (1993), pp. 191-209. MR 94b:49034

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 49M25, 65L10, 65L70, 65K10

Retrieve articles in all journals with MSC (2000): 49M25, 65L10, 65L70, 65K10


Additional Information

A. L. Dontchev
Affiliation: Mathematical Reviews, Ann Arbor, Michigan 48107
Email: ald@ams.org

William W. Hager
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email: hager@math.ufl.edu

DOI: https://doi.org/10.1090/S0025-5718-00-01184-4
Keywords: Optimal control, state constraints, Euler discretization, error estimates, variational inequality
Received by editor(s): October 15, 1998
Received by editor(s) in revised form: February 16, 1999
Published electronically: April 13, 2000
Additional Notes: This research was supported by the National Science Foundation.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society