Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Tamagawa numbers of diagonal cubic surfaces, numerical evidence


Authors: Emmanuel Peyre and Yuri Tschinkel
Journal: Math. Comp. 70 (2001), 367-387
MSC (2000): Primary 11D25, 14G40; Secondary 14G05, 14J25
DOI: https://doi.org/10.1090/S0025-5718-00-01189-3
Published electronically: June 12, 2000
MathSciNet review: 1681100
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

A refined version of Manin's conjecture about the asymptotics of points of bounded height on Fano varieties has been developed by Batyrev and the authors. We test numerically this refined conjecture for some diagonal cubic surfaces.


References [Enhancements On Off] (What's this?)

  • [BM] V. V. Batyrev et Y. I. Manin, Sur le nombre des points rationnels de hauteur bornée des variétés algébriques, Math. Ann. 286 (1990), 27-43. MR 91g:11069
  • [BT1] V. V. Batyrev and Y. Tschinkel, Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Notices 12 (1995), 591-635. MR 97a:14021
  • [BT2] -, Rational points on some Fano cubic bundles, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 41-46. MR 97j:14023
  • [BT3] -, Tamagawa numbers of polarized algebraic varieties, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 299-340. CMP 99:10
  • [Be] D. J. Bernstein, Enumerating solutions to $p(a)+q(b)=r(c)+s(d)$, Preprint (1998).
  • [Co] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math., vol. 138, Springer-Verlag, Berlin, Heidelberg and New York, 1993. MR 94i:11105
  • [CT1] J.-L. Colliot-Thélène, Hilbert's theorem $90$ for $K_2$, with application to the Chow groups of rational surfaces, Invent. Math. 71 (1983), 1-20. MR 85d:14016
  • [CT2] -, The Hasse principle in a pencil of algebraic varieties, Number theory (Tiruchirapalli, 1996), Contemp. Math., vol. 210, Amer. Math. Soc., Providence, 1998, pp. 19-39. MR 98g:11075
  • [CTKS] J.-L. Colliot-Thélène, D. Kanevsky et J.-J. Sansuc, Arithmétique des surfaces cubiques diagonales, Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Math., vol. 1290, Springer-Verlag, Berlin, Heidelberg and New York, 1987, pp. 1-108. MR 89g:11051
  • [CTS] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur une variété rationnelle définie sur un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), 1215-1218. MR 56:5565
  • [FMT] J. Franke, Y. I. Manin, and Y. Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), 421-435. MR 89m:11060
  • [H-B] D. R. Heath-Brown, The density of zeros of forms for which weak approximation fails, Math. Comp. 59 (1992), 613-623. MR 93a:11055
  • [IR] K. Ireland and M. Rosen, A classical introduction to modern number theory (second edition), Graduate texts in Math., vol. 84, Springer-Verlag, Berlin, Heidelberg and New York, 1990. MR 92e:11001
  • [Lac] G. Lachaud, Une présentation adélique de la série singulière et du problème de Waring, Enseign. Math. (2) 28 (1982), 139-169. MR 84b:10072
  • [Ma1] Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes Congrès intern. math., Tome 1 (Nice, 1970), Gauthiers-Villars, Paris, 1971, pp. 401-411. MR 55:356
  • [Ma2] -, Cubic forms (second edition), North-Holland Math. Library, vol. 4, North-Holland, Amsterdam, New York and Oxford, 1986. MR 87d:11037
  • [Pe1] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), $\hbox{n}^{\hbox{\scriptsize o}}\,$1, 101-218. MR 96h:11062
  • [Pe2] -, Terme principal de la fonction zêta des hauteurs et torseurs universels, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 259-298. CMP 99:10
  • [Sa] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Nombre et répartition de points de hauteur bornée, Astérisque, vol. 251, SMF, Paris, 1998, pp. 91-258. CMP 99:10
  • [SaSk] P. Salberger and A. N. Skorobogatov, Weak approximation for surfaces defined by two quadratic forms, Duke Math. J. 63 (1991), $\hbox{n}^{\hbox{\scriptsize o}}\,$2, 517-536. MR 93e:11079
  • [S-D] P. Swinnerton-Dyer, Counting rational points on cubic surfaces, Classification of algebraic varieties (L'Aquila, 1992) (C. Ciliberto, E. L. Livorni, and A. J. Sommese, eds.), Contemp. Math., vol. 162, AMS, Providence, 1994, pp. 371-379. MR 95d:11078

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11D25, 14G40, 14G05, 14J25

Retrieve articles in all journals with MSC (2000): 11D25, 14G40, 14G05, 14J25


Additional Information

Emmanuel Peyre
Affiliation: Institut de Recherche Mathématique Avancée, Université Louis Pasteur et C.N.R.S., 7 rue René-Descartes, 67084 Strasbourg, France
Email: peyre@irma.u-strasbg.fr

Yuri Tschinkel
Affiliation: Department of Mathematics, University of Illinois in Chicago, 851 South Morgan Street, Chicago IL 60607-7045, USA
Email: yuri@math.uic.edu

DOI: https://doi.org/10.1090/S0025-5718-00-01189-3
Received by editor(s): June 22, 1998
Received by editor(s) in revised form: January 4, 1999
Published electronically: June 12, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society