A new class of radial basis functions with compact support

Author:
M. D. Buhmann

Journal:
Math. Comp. **70** (2001), 307-318

MSC (2000):
Primary 41A05, 41A15, 41A25, 41A30, 65D05, 65D15

DOI:
https://doi.org/10.1090/S0025-5718-00-01251-5

Published electronically:
March 16, 2000

MathSciNet review:
1803129

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Radial basis functions are well-known and successful tools for the interpolation of data in many dimensions. Several radial basis functions of *compact support* that give rise to nonsingular interpolation problems have been proposed, and in this paper we study a new, larger class of smooth radial functions of compact support which contains other compactly supported ones that were proposed earlier in the literature.

**[1]**Buhmann, M.D. (1989) ``Cardinal interpolation with radial basis functions: an integral transform approach'', in Multivariate Approximation Theory IV, Walter Schempp, Karl Zeller, eds., International Series of Numerical Mathematics Vol. 90, Birkhäuser Verlag (Basel), pp. 41-64. MR**90m:41004****[2]**Buhmann, M.D. and C.A. Micchelli (1991) ``Multiply monotone functions for cardinal interpolation'', Advances in Appl. Math. 12, 358-386. MR**92g:41002****[3]**Buhmann, M.D. (1998) ``Radial basis functions on compact support'', Proceedings of the Edinburgh Math. Society 41, 33-46. MR**99d:41005****[4]**Gasper, G. (1975) ``Positive integrals of Bessel functions'', SIAM J. Math. Anal. 6, 868-881. MR**52:11144****[5]**Gradsteyn, I.S. and I.M. Ryzhik (1980) Table of Integrals, Series, and Products, Academic Press, San Diego. MR**81g:33001****[6]**Micchelli, C.A. (1986) ``Interpolation of scattered data: distance matrices and conditionally positive definite functions'', Constructive Approx. 2, 11-22. MR**88d:65016****[7]**Misiewicz, J.K. and D. St.P. Richards (1994) ``Positivity of integrals of Bessel functions'', SIAM J. Math. Anal. 25, 596-601. MR**95i:33004****[8]**Narcowich, F. and J. Ward (1991) ``Norms of inverses and condition numbers for matrices associated with scattered data'', J. Approx. Th. 64, 84-109. MR**92b:65017****[9]**Powell, M.J.D. (1992) ``The theory of radial basis function approximation in 1990'', in Advances in Numerical Analysis II, W.A. Light, ed., Claredon Press, Oxford, pp. 105-210. MR**95c:41003****[10]**Schaback, R. and Z. Wu (1996) ``Operators on radial functions'', J. of Computational and Appl. Math. 73, 257-270. MR**97g:42002****[11]**Stein, E. and G. Weiss (1971) Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton. MR**46:4102****[12]**Stewart, J. (1976) ``Positive definite functions and generalizations, an historical survey'', Rocky Mountains Math. J. 6, 409-434. MR**55:3679****[13]**Wendland, H. (1995) ``Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree'', Advances in Computational Mathematics 4, 389-396. MR**96h:41025****[14]**Wendland, H. (1997) ``Sobolev-type error estimates for interpolation by radial basis functions'', in Surface Fitting and Multiresolution Methods, A. LeMéhauté and L.L. Schumaker, eds., Vanderbilt University Press, Nashville, pp. 337-344. MR**99j:65012****[15]**Wendland, H. (1998) ``Error estimates for interpolation by radial basis functions of minimal degree, J. Approx. Th. 93, 258-272. MR**99g:65015****[16]**Williamson, R.E. (1956) ``Multiply monotone functions and their Laplace transforms'', Duke Math. J. 23, 189-207. MR**17:1061d****[17]**Wu, Z. and R. Schaback (1993) ``Local error estimates for radial basis function interpolation of scattered data'', IMA J. Numer. Anal. 13, 13-27. MR**93m:65012****[18]**Wu, Z. (1995) ``Compactly supported positive definite radial functions'', Advances in Computational Mathematics 4, 283-292. MR**97g:65031**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
41A05,
41A15,
41A25,
41A30,
65D05,
65D15

Retrieve articles in all journals with MSC (2000): 41A05, 41A15, 41A25, 41A30, 65D05, 65D15

Additional Information

**M. D. Buhmann**

Affiliation:
Lehrstuhl VIII Mathematik, Universität Dortmund, 44221 Dortmund, Germany

Address at time of publication:
Lehrstuhl Numerik, Justus-Liebig-Universität, Heinrich-Buff-Ring 44, 35392 Giessen, Germany

Email:
martin.buhmann@math.uni-giessen.de

DOI:
https://doi.org/10.1090/S0025-5718-00-01251-5

Received by editor(s):
January 7, 1999

Published electronically:
March 16, 2000

Article copyright:
© Copyright 2000
American Mathematical Society