Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Classification of quintic eutactic forms


Author: Christian Batut
Journal: Math. Comp. 70 (2001), 395-417
MSC (2000): Primary 11H55, 11H56; Secondary 11E10
DOI: https://doi.org/10.1090/S0025-5718-00-01295-3
Published electronically: July 21, 2000
MathSciNet review: 1803130
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: From the classical Voronoi algorithm, we derive an algorithm to classify quadratic positive definite forms by their minimal vectors; we define some new invariants for a class, for which several conjectures are proposed. Applying the algorithm to dimension 5 we obtain the table of the 136 classes in this dimension, we enumerate the 118 eutactic quintic forms, and we verify the Ash formula.


References [Enhancements On Off] (What's this?)

  • [Ash1] A.Ash, On eutactic forms, Can. J. Math. 29 (1977), 1040-1054. MR 58:10762
  • [Ash2] A.Ash, On the existence of eutactic forms, Bull. London Math. Soc. 12 (1980), 192-196. MR 83a:10034
  • [Ba] J.-L. Baril, Autour de l'algorithme de Voronoi: constructions de réseaux euclidiens, Thèse Bordeaux (1996).
  • [Bv] C. Bavard, Une formule d'Euler pour les classes minimales de réseaux, preprint.
  • [BM] A.-M. Bergé, J. Martinet, Sur la classification des réseaux eutactiques, J. London Math. Soc., 53 ((1996)), 417-432. MR 97i:11076
  • [CS] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Grundlehren $\text {n}^\circ $290, Heidelberg, 1988. MR 89a:11067
  • [CS1] J.H. Conway, N.J.A. Sloane, Low-dimensional lattices. III. Perfect forms, Proc. Royal Soc. London A 418 (1988), 43-80. MR 90a:11073
  • [KZ3] A. Korkine, G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242-292.
  • [Mar] J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson, Paris, 1996. MR 98a:11086
  • [PS] W. Plesken, B. Souvignier, Computing isometries of lattices, J. Symb. Comp. 24 (1997) 327-354. MR 98i:11047
  • [Sto] W.I. Stogrin, Quasi densest lattice packing of spheres., Dokl-Akad-Nauk-SSSR 218 (1974), 62-65.
  • [Vor] G. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques : 1 Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908), 97-178.
  • [W] G.L. Watson, On the minimum points of a positive quadratic form, Mathematica 18 (1971), 60-70. MR 44:6612

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11H55, 11H56, 11E10

Retrieve articles in all journals with MSC (2000): 11H55, 11H56, 11E10


Additional Information

Christian Batut
Affiliation: A2X, Mathématiques, Université Bordeaux I, 351, cours de la Libération, 33405 Talence cedex, France
Email: christian.batut@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S0025-5718-00-01295-3
Keywords: Quadratic form, minimal vectors, eutactic form
Received by editor(s): February 13, 1997
Received by editor(s) in revised form: June 19, 1997
Published electronically: July 21, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society