Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Shape calculus and finite element method in smooth domains

Author: T. Tiihonen
Journal: Math. Comp. 70 (2001), 1-15
MSC (2000): Primary 65N30; Secondary 49Q12
Published electronically: October 2, 2000
MathSciNet review: 1803123
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The use of finite elements in smooth domains leads naturally to polyhedral or piecewise polynomial approximations of the boundary. Hence the approximation error consists of two parts: the geometric part and the finite element part. We propose to exploit this decomposition in the error analysis by introducing an auxiliary problem defined in a polygonal domain approximating the original smooth domain. The finite element part of the error can be treated in the standard way. To estimate the geometric part of the error, we need quantitative estimates related to perturbation of the geometry. We derive such estimates using the techniques developed for shape sensitivity analysis.

References [Enhancements On Off] (What's this?)

  • 1. Babuska I., Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie des partiellen Differentialgleichungen auch in Zusammenhang mit der Elasticitätstheorie, Czechoslovak Math. J. 11, 1961, pp. 76-105, 165-203. MR 23:A2629
  • 2. Babuska I., The theory of small changes in the domain of existence in the theory of partial differential equations and its applications, in Differential equations and their applications, Academic Press, New York, 1963, pp. 13-26. MR 53:7070
  • 3. Berger A., Scott R., Strang G., Approximate boundary conditions in the finite element method, in Symposia Mathematica, Vol X, Academic Press, London, 1972, pp. 295-313. MR 53:7070
  • 4. Ciarlet P.G., Raviart P.A., Interpolation theory over curved elements with applications to finite element methods, Comp. Meth. Appl. Mech. Eng., 1, 1972, pp. 217-249. MR 51:11991
  • 5. Lenoir M., Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Num. Anal., 1986, pp. 562-580. MR 87m:65163
  • 6. Rannacher R., Scott R., Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38, 1982, pp. 437-445. MR 83e:65180
  • 7. Scott R. Interpolated boundary conditions in the finite element method, SIAM J. Num. Anal., 12, 1975, pp. 404-427. MR 52:7162
  • 8. Schatz A.H., Wahlbin L.B., On the quasi-optimality in $L^\infty$ of the $H^1_0$-projection into finite element spaces, Math. Comp. 38, 1982, pp. 1-22. MR 82m:65106
  • 9. Sokolowski J., Zolésio J.P., Introduction to shape optimization, shape sensitivity analysis, Springer, Berlin, 1992. MR 94d:49002
  • 10. Strang G., Berger A. E., The change in solution due to change in domain, Proceedings of symposia in pure mathematics, XXIII, Ed. D.C. Spencer, AMS, vol. 23, 1973, pp. 199-205. MR 49:1796
  • 11. Thomée V., Polygonal domain approximation in Dirichlet's problem, Journal of IMA, 11, 1973, pp. 33-44. MR 50:1538
  • 12. Tiihonen T., Finite element approximation of nonlocal heat radiation problems, Math. Mod. Meth. Appl. Sci., 8, 1998, pp. 1071-1089. MR 99h:65172
  • 13. Tiihonen T., Shape calculus and FEM in smooth domains, in Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, eds. Krízek M., Neittanmäki P., Stenberg, R., Marcel Dekker, New York, 1997, pp. 259-267. MR 99c:49041
  • 14. Verfürth R., Mixed finite element approximation of a fluid flow problem, in The mathematics of finite elements and applications V, ed. J. Whiteman, Academic Press, 1985, pp. 335-342. MR 87a:65184
  • 15. Verfürth R., Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. II, Num. Math. 59, 1991, pp. 616-636. MR 92k:65170
  • 16. Zlamal M., Curved elements in the finite element method, I, II, SIAM J. Num. Anal., 10, 1973, pp. 229-240, 11, 1974, pp. 347-362. MR 52:16060; MR 49:8400

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 49Q12

Retrieve articles in all journals with MSC (2000): 65N30, 49Q12

Additional Information

T. Tiihonen
Affiliation: Department of Mathematical Information Technology, University of Jyväskylä, Box 35, FIN–40351 Jyväskylä, Finland

Keywords: Finite elements, curved boundary, error estimates, shape derivatives, continuous dependence on geometry
Received by editor(s): November 17, 1997
Published electronically: October 2, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society