A class of infinite sums and integrals

Author:
R. Shail

Journal:
Math. Comp. **70** (2001), 789-799

MSC (2000):
Primary 65B10

DOI:
https://doi.org/10.1090/S0025-5718-00-01211-4

Published electronically:
March 1, 2000

MathSciNet review:
1697650

Full-text PDF

Abstract | References | Similar Articles | Additional Information

In this paper closed-form sums are given for various slowly-convergent infinite series which arise essentially from the differentiation of Dirichlet -series. Some associated integrations are also considered. A small number of the results appear in standard tables, but most seem to be new.

**1.**D. Borwein, J. M. Borwein, R. Shail and I. J. Zucker,*Energy of static electron lattices*, J. Phys A: Math. Gen.,**21**(1988), 1519-1531. MR**89f:82070****2.**R. Shail,*Some logarithmic lattice sums*, J. Phys A: Math. Gen.,**28**(1995), 6999-7009. MR**97a:11129****3.**I. S. Gradshteyn and I. M. Ryzhik,*Table of Integrals, Series and Products*, Academic Press, 1980. MR**81g:30001****4.**K. Chandrasekharan,*Introduction to Analytic Number Theory*, Springer-Verlag, 1968. MR**40:2593****5.**E. Landau,*Handbuch der Lehre von der Verteilung der Primzahlen*, Teubner, 1909. MR**16:904d (reprint)****6.**I. J. Zucker and M. M. Robertson,*Some properties of Dirichlet L-series*, J. Phys A: Math. Gen.,**9**(1976), 1207-1214. MR**54:253****7.**I. J. Zucker and M. M. Robertson,*Exact values for some two-dimensional lattice sums*, J. Phys A: Math. Gen.,**8**(1975), 874-881. MR**54:9515****8.**E. T. Whittaker and G. N. Watson,*A Course of Modern Analysis*, Cambridge University Press, 1952. MR**31:2375 (reprint)****9.**N. M. Temme,*Special Functions*, Wiley Interscience, 1996. MR**97e:33002**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65B10

Retrieve articles in all journals with MSC (2000): 65B10

Additional Information

**R. Shail**

Affiliation:
Department of Mathematics and Statistics, University of Surrey, Guildford, Surrey GU2 5XH, UK

Email:
r.shail@surrey.ac.uk

DOI:
https://doi.org/10.1090/S0025-5718-00-01211-4

Received by editor(s):
May 5, 1999

Published electronically:
March 1, 2000

Article copyright:
© Copyright 2000
American Mathematical Society