Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The $L_{2}$-approximation order of surface spline interpolation


Author: Michael J. Johnson
Journal: Math. Comp. 70 (2001), 719-737
MSC (2000): Primary 41A15, 41A25, 41A63, 65D05
DOI: https://doi.org/10.1090/S0025-5718-00-01301-6
Published electronically: October 27, 2000
MathSciNet review: 1813145
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if the open, bounded domain $\Omega \subset \mathbb{R}^{d}$ has a sufficiently smooth boundary and if the data function $f$ is sufficiently smooth, then the $L_{p}(\Omega )$-norm of the error between $f$ and its surface spline interpolant is $O(\delta ^{\gamma _{p}+1/2})$ ( $1\leq p\leq \infty $), where $\gamma _{p}:=\min \{m,m-d/2+d/p\}$ and $m$ is an integer parameter specifying the surface spline. In case $p=2$, this lower bound on the approximation order agrees with a previously obtained upper bound, and so we conclude that the $L_{2}$-approximation order of surface spline interpolation is $m+1/2$.


References [Enhancements On Off] (What's this?)

  • [1] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1975. MR 56:9247
  • [2] Agmon, S., Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965. MR 31:2504
  • [3] Bejancu, A., Local accuracy for radial basis function interpolation on finite uniform grids, J. Approx. Th. 99 (1999), 242-257.MR 2000e:41002
  • [4] Buhmann, M.D., Multivariate cardinal interpolation with radial basis functions, Constr. Approx. 8 (1990), 225-255. MR 91f:41001
  • [5] Buhmann, M.D., New developments in the theory of radial basis function interpolation, Multivariate Approximation: From CAGD to Wavelets (K. Jetter, F.I. Utreras, eds.), World Scientific, Singapore, 1993, pp. 35-75.CMP 96:03
  • [6] Buhmann, M.D., N. Dyn and D. Levin, On quasi-interpolation by radial basis functions with scattered centres, Constr. Approx. 11 (1995), 239-254. MR 96h:41038
  • [7] Duchon, J., Splines minimizing rotation-invariant seminorms in Sobolev spaces, Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics 571 (W. Schempp, K. Zeller, eds.), Springer-Verlag, Berlin, 1977, pp. 85-100. MR 58:12146
  • [8] Duchon, J., Sur l'erreur d'interpolation des fonctions de plusieur variables par les $D^{m}$-splines, RAIRO Analyse Numerique 12 (1978), 325-334. MR 80j:41052
  • [9] Dyn, N. and A. Ron, Radial basis function approximation: from gridded centres to scattered centres, Proc. London Math Soc (3) 71 (1995), 76-108. MR 96f:41040
  • [10] Gelfand, I. M. and G. E. Shilov, Generalized Functions, vol. 1, Academic Press, 1964. MR 55:8786a
  • [11] Jia, R.-Q. and J. Lei, Approximation by Multi-integer Translates of Functions Having Global Support, J. Approx. Theory 72 (1993), 2-23.MR 94f:41024
  • [12] Johnson, M.J., A bound on the approximation order of surface splines, Constr. Approx. 14 (1998), 429-438. MR 99c:41023
  • [13] Johnson, M.J., An improved order of approximation for thin-plate spline interpolation in the unit disk, Numer. Math. 84 (2000), 451-474. CMP 2000:07
  • [14] Johnson, M.J., On the error in surface spline interpolation of a compactly supported function, manuscript.
  • [15] Light, W.A. and H.S.J. Wayne, Spaces of distributions, interpolation by translates of a basis function and error estimates, Numer. Math. 81 (1999), 415-450. MR 99m:65021
  • [16] Madych, W.R., and S.A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Th. 70 (1992), 94-114. MR 93f:41009
  • [17] Peetre, J., New Thoughts on Besov Spaces, Math. Dept. Duke Univ., Durham, NC, 1976. MR 57:1108
  • [18] Powell, M.J.D., The theory of radial basis function approximation in 1990, Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Functions (W.A. Light, ed.), Oxford University Press, Oxford, 1992, pp. 105-210. CMP 92:15
  • [19] Powell, M.J.D., The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math. 68 (1994), 107-128. MR 95c:41037
  • [20] Rudin, W., Principles of Mathematical Analysis, McGraw-Hill, 1976. MR 52:5893
  • [21] Rudin, W., Real and Complex Analysis, McGraw-Hill, 1987. MR 88k:00002
  • [22] Schaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv. Comp. Math. 3 (1995), 251-264. MR 96a:41004
  • [23] Schaback, R., Improved error bounds for radial basis function interpolation, Math. Comp. 68 (1999), 201-216. MR 99d:41037
  • [24] Triebel, H., Theory of function spaces II, Birkhäuser, 1992. MR 93f:46029
  • [25] Triebel, H., Fractals and spectra, Birkhäuser, 1997. MR 99b:46048
  • [26] Wu, Z. and R. Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), 13-27. MR 93m:65012

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 41A15, 41A25, 41A63, 65D05

Retrieve articles in all journals with MSC (2000): 41A15, 41A25, 41A63, 65D05


Additional Information

Michael J. Johnson
Affiliation: Deptartment of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
Email: johnson@mcc.sci.kuniv.edu.kw

DOI: https://doi.org/10.1090/S0025-5718-00-01301-6
Keywords: Interpolation, surface spline, approximation order, scattered data
Received by editor(s): June 10, 1999
Published electronically: October 27, 2000
Additional Notes: This work was supported by Kuwait University Research Grant SM-175.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society