A convergent boundary integral method for threedimensional water waves
Author:
J. Thomas Beale
Journal:
Math. Comp. 70 (2001), 9771029
MSC (2000):
Primary 65M12, 76B15; Secondary 65D30
Published electronically:
February 17, 2000
MathSciNet review:
1709144
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We design a boundary integral method for timedependent, threedimensional, doubly periodic water waves and prove that it converges with accuracy, without restriction on amplitude. The moving surface is represented by grid points which are transported according to a computed velocity. An integral equation arising from potential theory is solved for the normal velocity. A new method is developed for the integration of singular integrals, in which the Green's function is regularized and an efficient local correction to the trapezoidal rule is computed. The sums replacing the singular integrals are treated as discrete versions of pseudodifferential operators and are shown to have mapping properties like the exact operators. The scheme is designed so that the error is governed by evolution equations which mimic the structure of the original problem, and in this way stability can be assured. The wavelike character of the exact equations of motion depends on the positivity of the operator which assigns to a function on the surface the normal derivative of its harmonic extension; similarly, the stability of the scheme depends on maintaining this property for the discrete operator. With grid points, the scheme can be implemented with essentially operations per time step.
 [1]
Christopher
Anderson and Claude
Greengard, On vortex methods, SIAM J. Numer. Anal.
22 (1985), no. 3, 413–440. MR 787568
(86j:76016), http://dx.doi.org/10.1137/0722025
 [2]
V.
K. Andreev, Ustoichivost neustanovivshikhsya dvizhenii zhidkosti so
svobodnoi granitsei, VO “Nauka”, Novosibirsk, 1992
(Russian, with English and Russian summaries). MR 1244798
(94j:76001)
 [3]
Gregory
R. Baker, Daniel
I. Meiron, and Steven
A. Orszag, Generalized vortex methods for freesurface flow
problems, J. Fluid Mech. 123 (1982), 477–501.
MR 687014
(84a:76002), http://dx.doi.org/10.1017/S0022112082003164
 [4]
Gregory
R. Baker, Daniel
I. Meiron, and Steven
A. Orszag, Boundary integral methods for axisymmetric and
threedimensional RayleighTaylor instability problems, Phys. D
12 (1984), no. 13, 19–31. MR 762803
(87h:76071), http://dx.doi.org/10.1016/01672789(84)905116
 [5]
J.
Thomas Beale, Thomas
Y. Hou, and John
S. Lowengrub, Growth rates for the linearized motion of fluid
interfaces away from equilibrium, Comm. Pure Appl. Math.
46 (1993), no. 9, 1269–1301. MR 1231428
(95c:76016), http://dx.doi.org/10.1002/cpa.3160460903
 [6]
J.
Thomas Beale, Thomas
Y. Hou, and John
Lowengrub, Convergence of a boundary integral method for water
waves, SIAM J. Numer. Anal. 33 (1996), no. 5,
1797–1843. MR 1411850
(98b:76009), http://dx.doi.org/10.1137/S0036142993245750
 [7]
J.
Thomas Beale and Andrew
Majda, Vortex methods. I. Convergence in
three dimensions, Math. Comp.
39 (1982), no. 159, 1–27. MR 658212
(83i:65069a), http://dx.doi.org/10.1090/S00255718198206582125
 [8]
J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys. 58 (1985), 188208.
 [9]
J. Broeze, E. F. G. Van Daalen, and P. J. Zandbergen, A threedimensional panel method for nonlinear free surface waves on vector computers, Comput. Mech. 13 (1993), 1228.
 [10]
David
L. Colton and Rainer
Kress, Integral equation methods in scattering theory, Pure
and Applied Mathematics (New York), John Wiley & Sons, Inc., New York,
1983. A WileyInterscience Publication. MR 700400
(85d:35001)
 [11]
G.H.
Cottet and P.A.
Raviart, Particle methods for the onedimensional VlasovPoisson
equations, SIAM J. Numer. Anal. 21 (1984),
no. 1, 52–76. MR 731212
(85c:82048), http://dx.doi.org/10.1137/0721003
 [12]
Jonathan
Goodman, Thomas
Y. Hou, and John
Lowengrub, Convergence of the point vortex method for the 2D Euler
equations, Comm. Pure Appl. Math. 43 (1990),
no. 3, 415–430. MR 1040146
(91d:65152), http://dx.doi.org/10.1002/cpa.3160430305
 [13]
I.
S. Gradshteyn and I.
M. Ryzhik, Table of integrals, series, and products, Academic
Press [Harcourt Brace Jovanovich, Publishers], New YorkLondonToronto,
Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey;
Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V.
Geronimus]\ and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from
the Russian. MR
582453 (81g:33001)
 [14]
Leslie
Greengard and Vladimir
Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, Acta numerica, 1997, Acta Numer.,
vol. 6, Cambridge Univ. Press, Cambridge, 1997,
pp. 229–269. MR 1489257
(99c:65012), http://dx.doi.org/10.1017/S0962492900002725
 [15]
Bertil
Gustafsson, HeinzOtto
Kreiss, and Joseph
Oliger, Time dependent problems and difference methods, Pure
and Applied Mathematics (New York), John Wiley & Sons, Inc., New York,
1995. A WileyInterscience Publication. MR 1377057
(97c:65145)
 [16]
Ole
H. Hald, Convergence of vortex methods for Euler’s equations.
II, SIAM J. Numer. Anal. 16 (1979), no. 5,
726–755. MR
543965 (81b:76015b), http://dx.doi.org/10.1137/0716055
 [17]
David
J. Haroldsen and Daniel
I. Meiron, Numerical calculation of threedimensional interfacial
potential flows using the point vortex method, SIAM J. Sci. Comput.
20 (1998), no. 2, 648–683 (electronic). MR 1642620
(99c:76010), http://dx.doi.org/10.1137/S1064827596302060
 [18]
Thomas
Y. Hou, Zhenhuan
Teng, and Pingwen
Zhang, Wellposedness of linearized motion for 3D water waves far
from equilibrium, Comm. Partial Differential Equations
21 (1996), no. 910, 1551–1585. MR 1410841
(98c:76013), http://dx.doi.org/10.1080/03605309608821238
 [19]
T. Y. Hou and P. Zhang, Stability of a boundary integral method for 3D water waves, submitted to SIAM J. Numer. Anal.
 [20]
R.
E. Kleinman and G.
F. Roach, Boundary integral equations for the threedimensional
Helmholtz equation, SIAM Rev. 16 (1974),
214–236. MR 0380087
(52 #988)
 [21]
M.
S. LonguetHiggins and E.
D. Cokelet, The deformation of steep surface waves on water. I. A
numerical method of computation, Proc. Roy. Soc. London Ser. A
350 (1976), no. 1660, 1–26. MR 0411355
(53 #15091)
 [22]
J.
S. Lowengrub, M.
J. Shelley, and B.
Merriman, Highorder and efficient methods for the vorticity
formulation of the Euler equations, SIAM J. Sci. Comput.
14 (1993), no. 5, 1107–1142. MR 1232178
(94e:76065), http://dx.doi.org/10.1137/0914067
 [23]
J.
N. Lyness, An error functional expansion for
𝑁dimensional quadrature with an integrand function singular at a
point, Math. Comp. 30
(1976), no. 133, 1–23. MR 0408211
(53 #11976), http://dx.doi.org/10.1090/S00255718197604082110
 [24]
J.
N. Lyness and Ronald
Cools, A survey of numerical cubature over triangles,
Mathematics of Computation 1943–1993: a halfcentury of computational
mathematics (Vancouver, BC, 1993) Proc. Sympos. Appl. Math.,
vol. 48, Amer. Math. Soc., Providence, RI, 1994,
pp. 127–150. MR 1314845
(95j:65021), http://dx.doi.org/10.1090/psapm/048/1314845
 [25]
Andrew
Majda, James
McDonough, and Stanley
Osher, The Fourier method for nonsmooth
initial data, Math. Comp.
32 (1978), no. 144, 1041–1081. MR 501995
(80a:65197), http://dx.doi.org/10.1090/S00255718197805019954
 [26]
Robert
D. Richtmyer and K.
W. Morton, Difference methods for initialvalue problems,
Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1967. MR 0220455
(36 #3515)
 [27]
J. E. Romate, The numerical simulation of nonlinear gravity waves, Engrng. Analysis Bdry. Elts., 7 (1990), 156166.
 [28]
J. E. Romate and P. J. Zandbergen Boundary integral equation formulations for freesurface flow problems in two and three dimensions, Comput. Mech. 4 (1989), 267282.
 [29]
John
Strain, Fast potential theory. II. Layer potentials and discrete
sums, J. Comput. Phys. 99 (1992), no. 2,
251–270. MR 1158209
(93b:65197), http://dx.doi.org/10.1016/00219991(92)90206E
 [30]
Michael
E. Taylor, Pseudodifferential operators, Princeton
Mathematical Series, vol. 34, Princeton University Press, Princeton,
N.J., 1981. MR
618463 (82i:35172)
 [31]
M. Taylor, Partial Differential Equations, Springer, New York, 1996. MR 98b:35002
 [32]
Wuting
Tsai and Dick
K. P. Yue, Computation of nonlinear freesurface flows, Annual
review of fluid mechanics, Vol.\ 28, Annual Reviews, Palo Alto, CA, 1996,
pp. 249–278. MR 1371167
(96i:76086)
 [33]
T. Vinje and P. Brevig, Numerical simulation of breaking waves, Adv. Water Resources 4 (1981), 7782.
 [34]
Sijue
Wu, Wellposedness in Sobolev spaces of the full water wave problem
in 2D, Invent. Math. 130 (1997), no. 1,
39–72. MR
1471885 (98m:35167), http://dx.doi.org/10.1007/s002220050177
 [35]
Sijue Wu, Wellposedness in Sobolev spaces of the full water wave problem in 3D, J. Amer. Math. Soc. 12 (1999), 445495. CMP 99:08
 [1]
 C. Anderson and C. Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), 413440. MR 86j:76016
 [2]
 V. K. Andreev, Stability of unsteady motions of a fluid with a free boundary, VO Nauka, Novosibirsk, 1992 (in Russian). MR 94j:76001
 [3]
 G. Baker, D. Meiron, and S. Orszag, Generalized vortex methods for freesurface flow problems, J. Fluid Mech. 123 (1982), 477501. MR 84a:76002
 [4]
 G. Baker, D. Meiron, and S. Orszag, Boundary integral methods for axisymmetric and threedimensional RayleighTaylor instability problems, Physica D 12 (1984), 1931. MR 87h:76071
 [5]
 J. T. Beale, T. Y. Hou and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math. 46 (1993), 12691301. MR 95c:76016
 [6]
 J. T. Beale, T. Y. Hou and J. S. Lowengrub, Convergence of a boundary integral method for water waves, SIAM J. Numer. Anal. 33 (1996), 17971843. MR 98b:76009
 [7]
 J. T. Beale and A. Majda Vortex methods, I: Convergence in three dimensions, Math. Comp. 39 (1982), 127. MR 83i:65069a
 [8]
 J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys. 58 (1985), 188208.
 [9]
 J. Broeze, E. F. G. Van Daalen, and P. J. Zandbergen, A threedimensional panel method for nonlinear free surface waves on vector computers, Comput. Mech. 13 (1993), 1228.
 [10]
 D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983. MR 85d:35001
 [11]
 G. H. Cottet and P. A. Raviart, Particle methods for the onedimensional VlasovPoisson equations, SIAM J. Numer. Anal. 21 (1984), 5276. MR 85c:82048
 [12]
 J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the point vortex method for the 2D Euler equations, Comm. Pure Appl. Math. 43 (1990), 415430. MR 91d:65152
 [13]
 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980. MR 81g:33001
 [14]
 L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer. 6 (1997), 229269. MR 99c:65012
 [15]
 B. Gustafsson, H. O, Kreiss, and J. Oliger, Time dependent problems and difference methods, Wiley, New York, 1995. MR 97c:65145
 [16]
 O. Hald, The convergence of vortex methods, II, SIAM J. Numer. Anal. 16 (1979), 726755. MR 81b:76015b
 [17]
 D. Haroldsen and D. Meiron, Numerical calculation of three dimensional interfacial potential flows using the point vortex method, SIAM J. Sci. Comput. 20 (1999), 648683. MR 99c:76010
 [18]
 T. Y. Hou, Z. Teng, and P. Zhang, Wellposedness of linearized motion for 3D water waves far from equilibrium, Commun. P.D.E. 21 (1996), 15511585. MR 98c:76013
 [19]
 T. Y. Hou and P. Zhang, Stability of a boundary integral method for 3D water waves, submitted to SIAM J. Numer. Anal.
 [20]
 R. E. Kleinman and G. F. Roach, Boundary integral equations for the threedimensional Helmholtz equation, SIAM Review 16 (1974), 214236. MR 52:988
 [21]
 M. S. LonguetHiggins and E. D. Cokelet, The deformation of steep surface waves on water, I. A numerical method of computation, Proc. Roy. Soc. London A 350 (1976), 126. MR 53:15091
 [22]
 J. Lowengrub, M. Shelley, and B. Merriman, Highorder and efficient methods for the vorticity formulation of the Euler equations, SIAM J. Sci. Comput. 14 (1993), 11071142. MR 94e:76065
 [23]
 J. N. Lyness, An error functional expansion for Ndimensional quadrature with an integrand function singular at a point, Math. Comp. 30 (1976), 123. MR 53:11976
 [24]
 J. N. Lyness, A survey of numerical cubature over triangles, in Proc. Symp. Appl. Math. 48, A.M.S., Providence, 1994. MR 95j:65021
 [25]
 A. Majda, J. McDonough and S. Osher, The Fourier method for nonsmooth initial data, Math. Comp. 32 (1978), 10411081. MR 80a:65197
 [26]
 R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Wiley, New York, 1967. MR 36:3515
 [27]
 J. E. Romate, The numerical simulation of nonlinear gravity waves, Engrng. Analysis Bdry. Elts., 7 (1990), 156166.
 [28]
 J. E. Romate and P. J. Zandbergen Boundary integral equation formulations for freesurface flow problems in two and three dimensions, Comput. Mech. 4 (1989), 267282.
 [29]
 J. Strain, Fast potential theory. II. Layer potentials and discrete sums, J. Comput Phys. 99 (1992), 251270. MR 93b:65197
 [30]
 M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ, 1981. MR 82i:35172
 [31]
 M. Taylor, Partial Differential Equations, Springer, New York, 1996. MR 98b:35002
 [32]
 W. Tsai and D. Yue, Computations of nonlinear freesurface flows, Ann. Rev. Fluid Mech. 28 (1996), 249278. MR 96i:76086
 [33]
 T. Vinje and P. Brevig, Numerical simulation of breaking waves, Adv. Water Resources 4 (1981), 7782.
 [34]
 Sijue Wu, Wellposedness in Sobolev spaces of the full water wave problem in 2D, Invent. Math. 130 (1997), 3972.MR 98m:35167
 [35]
 Sijue Wu, Wellposedness in Sobolev spaces of the full water wave problem in 3D, J. Amer. Math. Soc. 12 (1999), 445495. CMP 99:08
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
65M12,
76B15,
65D30
Retrieve articles in all journals
with MSC (2000):
65M12,
76B15,
65D30
Additional Information
J. Thomas Beale
Affiliation:
Department of Mathematics, Duke University, Durham, NC 277080320
Email:
beale@math.duke.edu
DOI:
http://dx.doi.org/10.1090/S0025571800012187
PII:
S 00255718(00)012187
Keywords:
Water waves,
boundary integral methods,
integral operators,
quadrature of singular integrals
Received by editor(s):
September 9, 1998
Received by editor(s) in revised form:
June 10, 1999
Published electronically:
February 17, 2000
Additional Notes:
The author was supported in part by NSF Grant #DMS9870091.
Article copyright:
© Copyright 2000
American Mathematical Society
