Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Geometry of the Jantzen region in Lusztig's conjecture


Author: Brian D. Boe
Journal: Math. Comp. 70 (2001), 1265-1280
MSC (2000): Primary 20G05; Secondary 20F55, 51F15
Published electronically: March 14, 2000
MathSciNet review: 1709146
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

The Lusztig Conjecture expresses the character of a finite-dimensional irreducible representation of a reductive algebraic group $G$ in prime characteristic as a linear combination of characters of Weyl modules for $G$. The representations described by the conjecture are in one-to-one correspondence with the (finitely many) alcoves in the intersection of the dominant cone and the so-called Jantzen region. Each alcove has a length, defined to be the number of alcove walls (hyperplanes) separating it from the fundamental alcove (the unique alcove in the dominant cone whose closure contains the origin). This article determines the maximum length of an alcove in the intersection of the dominant cone with the Jantzen region.


References [Enhancements On Off] (What's this?)

  • 1. Raoul Bott, An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France 84 (1956), 251–281. MR 0087035 (19,291a)
  • 2. N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238 (39 #1590)
  • 3. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • 4. Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071 (89c:20001)
  • 5. George Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121–164. MR 591724 (82b:20059), http://dx.doi.org/10.1016/0001-8708(80)90031-6
  • 6. George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 313–317. MR 604598 (82i:20014)
  • 7. M. Schönert et. al., GAP -- Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth edition, 1995.
  • 8. Wolfgang Soergel, Conjectures de Lusztig, Astérisque 237 (1996), Exp.\ No.\ 793, 3, 75–85 (French, with French summary). Séminaire Bourbaki, Vol.\ 1994/95. MR 1423620 (98f:20029)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 20G05, 20F55, 51F15

Retrieve articles in all journals with MSC (2000): 20G05, 20F55, 51F15


Additional Information

Brian D. Boe
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602-7403
Email: brian@math.uga.edu

DOI: http://dx.doi.org/10.1090/S0025-5718-00-01220-5
PII: S 0025-5718(00)01220-5
Received by editor(s): May 22, 1998
Received by editor(s) in revised form: July 6, 1999
Published electronically: March 14, 2000
Article copyright: © Copyright 2000 American Mathematical Society