Computer verification of the AnkenyArtinChowla Conjecture for all primes less than
Authors:
A. J. van der Poorten, H. J. J. te Riele and H. C. Williams
Journal:
Math. Comp. 70 (2001), 13111328
MSC (2000):
Primary 11A55, 11J70, 11Y40, 11Y65, 11R11
Published electronically:
March 15, 2000
Corrigendum:
Math. Comp. 72 (2002), 521523.
MathSciNet review:
1709160
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a prime congruent to 1 modulo 4, and let be rational integers such that is the fundamental unit of the real quadratic field . The AnkenyArtinChowla conjecture (AAC conjecture) asserts that will not divide . This is equivalent to the assertion that will not divide , where denotes the th Bernoulli number. Although first published in 1952, this conjecture still remains unproved today. Indeed, it appears to be most difficult to prove. Even testing the conjecture can be quite challenging because of the size of the numbers ; for example, when , then both and exceed . In 1988 the AAC conjecture was verified by computer for all . In this paper we describe a new technique for testing the AAC conjecture and we provide some results of a computer run of the method for all primes up to .
 1.
N.
C. Ankeny, E.
Artin, and S.
Chowla, The classnumber of real quadratic fields, Proc. Nat.
Acad. Sci. U. S. A. 37 (1951), 524–525. MR 0043137
(13,212c)
 2.
N.
C. Ankeny, E.
Artin, and S.
Chowla, The classnumber of real quadratic number fields, Ann.
of Math. (2) 56 (1952), 479–493. MR 0049948
(14,251h)
 3.
N.
C. Ankeny and S.
Chowla, A note on the class number of real quadratic fields,
Acta Arith 6 (1960), 145–147. MR 0115983
(22 #6780)
 4.
N.
C. Ankeny and S.
Chowla, A further note on the class number of real quadratic
fields, Acta Arith. 7 (1961/1962), 271–272. MR 0137697
(25 #1147)
 5.
Eric
Bach, Improved approximations for Euler products, Number
theory (Halifax, NS, 1994) CMS Conf. Proc., vol. 15, Amer. Math.
Soc., Providence, RI, 1995, pp. 13–28. MR 1353917
(96i:11124)
 6.
B.
D. Beach, H.
C. Williams, and C.
R. Zarnke, Some computer results on units in quadratic and cubic
fields, Mathematical Congress (Lakehead Univ., Thunder Bay, Ont.,
1971) Lakehead Univ., Thunder Bay, Ont., 1971, pp. 609–648. MR 0337887
(49 #2656)
 7.
L.
Carlitz, Note on the class number of real
quadratic fields, Proc. Amer. Math. Soc. 4 (1953), 535–537.
MR
0056636 (15,104g), http://dx.doi.org/10.1090/S00029939195300566364
 8.
Richard
Crandall, Karl
Dilcher, and Carl
Pomerance, A search for Wieferich and Wilson
primes, Math. Comp. 66
(1997), no. 217, 433–449. MR 1372002
(97c:11004), http://dx.doi.org/10.1090/S0025571897007916
 9.
S. Fillebrown, Faster computation of Bernoulli numbers, J. of Algorithms 13(1992), 431445.
 10.
Sandra
Fillebrown, Faster computation of Bernoulli numbers, J.
Algorithms 13 (1992), no. 3, 431–445. MR 1176671
(94d:68044), http://dx.doi.org/10.1016/01966774(92)90048H
 11.
A.
K. Head, Multiplication modulo 𝑛, BIT
20 (1980), no. 1, 115–116. MR 569985
(81g:68001), http://dx.doi.org/10.1007/BF01933594
 12.
A.
A. Kiselev, An expression for the number of classes of ideals of
real quadratic fields by means of Bernoulli numbers, Doklady Akad.
Nauk SSSR (N. S.) 61 (1948), 777–779 (Russian). MR 0027021
(10,236h)
 13.
H.
W. Lenstra Jr., On the calculation of regulators and class numbers
of quadratic fields, Number theory days, 1980 (Exeter, 1980) London
Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press,
Cambridge, 1982, pp. 123–150. MR 697260
(86g:11080)
 14.
Richard
A. Mollin, Quadratics, CRC Press Series on Discrete
Mathematics and its Applications, CRC Press, Boca Raton, FL, 1996. MR 1383823
(97e:11135)
 15.
L.
J. Mordell, On a pellian equation conjecture, Acta Arith.
6 (1960), 137–144. MR 0118699
(22 #9470)
 16.
L.
J. Mordell, On a Pellian equation conjecture. II, J. London
Math. Soc. 36 (1961), 282–288. MR 0126411
(23 #A3707)
 17.
Oskar
Perron, Die Lehre von den Kettenbrüchen, Chelsea
Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR 0037384
(12,254b)
 18.
Daniel
Shanks, The infrastructure of a real quadratic field and its
applications, Proceedings of the Number Theory Conference (Univ.
Colorado, Boulder, Colo., 1972), Univ. Colorado, Boulder, Colo., 1972,
pp. 217–224. MR 0389842
(52 #10672)
 19.
I. S. Slavutskii, Upper bounds and numerical calculation of the number of ideal classes of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969), 6771.
 20.
R. Soleng, A computer investigation of units in quadratic number fields, Unpublished ms., 1986.
 21.
A.
J. Stephens and H.
C. Williams, Some computational results on a
problem concerning powerful numbers, Math.
Comp. 50 (1988), no. 182, 619–632. MR 929558
(89d:11091), http://dx.doi.org/10.1090/S00255718198809295583
 22.
H.
C. Williams and M.
C. Wunderlich, On the parallel generation of the
residues for the continued fraction factoring algorithm, Math. Comp. 48 (1987), no. 177, 405–423. MR 866124
(88i:11099), http://dx.doi.org/10.1090/S00255718198708661241
 1.
 N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Proc. Nat. Acad. Sci. USA 37 (1951), 524525. MR 13:212c
 2.
 N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Annals of Math. 56 (1952), 479493. MR 14:251h
 3.
 N. C. Ankeny and S. Chowla, A note on the class number of real quadratic fields, Acta Arith. 6 (1960), 145147. MR 22:6780
 4.
 N. C. Ankeny and S. Chowla, A further note on the class number of real quadratic fields, Acta Arith. 7 (1962), 271272. MR 25:1147
 5.
 E. Bach, Improved approximations for Euler products, Number Theory, CMS Conference Proceedings, Vol. 15, AMS, 1995, 1328. MR 96i:11124
 6.
 B. D. Beach, H. C. Williams and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proc. 25th Summer Meeting Can. Math. Congress, Lakehead University, 1971, 609648. MR 49:2656
 7.
 L. Carlitz, Note on the class number of real quadratic fields, Proc. Amer. Math. Soc. 4 (1953), 535537. MR 15:104g
 8.
 R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), 433449. MR 97c:11004
 9.
 S. Fillebrown, Faster computation of Bernoulli numbers, J. of Algorithms 13(1992), 431445.
 10.
 A. K. Head, Multiplication modulo , BIT 20 (1980), 115116. MR 94d:68044
 11.
 M. J. Jacobson, R.F. Lukes and H.C. Williams, An investigation of the bounds for the regulator of quadratic fields, Experimental Math. 4 (1995), 211225. MR 81g:68001
 12.
 A. A. Kiselev, An expression for the number of classes of ideals of real quadratic fields by means of Bernoulli numbers, Doklady Akad. Nauk SSSR (N.S.) 61 (1948), 777779. (Russian) MR 10:236h
 13.
 H. W. Lenstra, Jr., On the calculation of regulators and class numbers of quadratic fields, London Math. Soc. Lecture Note Series 56 (1982), 123150. MR 86g:11080
 14.
 R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996. MR 97e:11135
 15.
 L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137144. MR 22:9470
 16.
 L. J. Mordell, On a Pellian equation conjecture (II), J. London Math. Soc. 36 (1961), 282288. MR 23:A3707
 17.
 O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Chelsea, New York, 1950. MR 12:254b
 18.
 D. Shanks, The infrastructure of real quadratic number fields and its applications, Proc. 1972 Number Theory Conf., Boulder Colorado, 1973, 217224. MR 52:10672
 19.
 I. S. Slavutskii, Upper bounds and numerical calculation of the number of ideal classes of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969), 6771.
 20.
 R. Soleng, A computer investigation of units in quadratic number fields, Unpublished ms., 1986.
 21.
 A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp. 50 (1988), 619632. MR 89d:11091
 22.
 H. C. Williams and M. C. Wunderlich, On the parallel generation of the residues for the continued fraction algorithm, Math. Comp. 48 (1987), 405423. MR 88i:11099
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
11A55,
11J70,
11Y40,
11Y65,
11R11
Retrieve articles in all journals
with MSC (2000):
11A55,
11J70,
11Y40,
11Y65,
11R11
Additional Information
A. J. van der Poorten
Affiliation:
Centre for Number Theory Research, Macquarie University, Sydney, NSW 2109, \penalty10000 Australia
Email:
alf@math.mq.edu.au
H. J. J. te Riele
Affiliation:
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Email:
Herman.te.Riele@cwi.nl
H. C. Williams
Affiliation:
Dept. of Computer Science, University of Manitoba, Winnipeg, Manitoba Canada R3T 2N2
Email:
williams@cs.umanitoba.ca
DOI:
http://dx.doi.org/10.1090/S0025571800012345
PII:
S 00255718(00)012345
Keywords:
Periodic continued fraction,
function field
Received by editor(s):
March 22, 1999
Received by editor(s) in revised form:
July 6, 1999
Published electronically:
March 15, 2000
Additional Notes:
The first author was supported in part by a grant from the Australian Research Council.
The research of the third author was supported by NSERC Canada grant #A7649.
Article copyright:
© Copyright 2000 American Mathematical Society
