Numerical testing of the stability of viscous shock waves
Author:
Leon Q. Brin
Journal:
Math. Comp. 70 (2001), 10711088
MSC (2000):
Primary 35B35, 65L70, 3504; Secondary 35L65
Published electronically:
November 27, 2000
MathSciNet review:
1710652
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A new theoretical Evans function condition is used as the basis of a numerical test of viscous shock wave stability. Accuracy of the method is demonstrated through comparison against exact solutions, a convergence study, and evaluation of approximate error equations. Robustness is demonstrated by applying the method to waves for which no current analytic results apply (highly nonlinear waves from the cubic model and strong shocks from gas dynamics). An interesting aspect of the analysis is the need to incorporate features from the analytic Evans function theory for purposes of numerical stability. For example, we find it necessary, for numerical accuracy, to solve ODEs on the space of wedge products.
 1.
J.
Alexander, R.
Gardner, and C.
Jones, A topological invariant arising in the stability analysis of
travelling waves, J. Reine Angew. Math. 410 (1990),
167–212. MR 1068805
(92d:58028)
 2.
L.Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. dissertation, Indiana University, May 1998.
 3.
J.
C. Butcher, The numerical analysis of ordinary differential
equations, A WileyInterscience Publication, John Wiley & Sons,
Ltd., Chichester, 1987. Runge\mhy Kutta and general linear methods. MR 878564
(88d:65002)
 4.
W.
A. Coppel, Stability and asymptotic behavior of differential
equations, D. C. Heath and Co., Boston, Mass., 1965. MR 0190463
(32 #7875)
 5.
John
W. Evans, Nerve axon equations. I. Linear approximations,
Indiana Univ. Math. J. 21 (1971/72), 877–885. MR 0292531
(45 #1616)
 6.
John
W. Evans, Nerve axon equations. II. Stability at rest, Indiana
Univ. Math. J. 22 (1972/73), 75–90. MR 0323372
(48 #1729)
 7.
John
W. Evans, Nerve axon equations. III. Stability of the nerve
impulse, Indiana Univ. Math. J. 22 (1972/73),
577–593. MR 0393890
(52 #14697)
 8.
John
W. Evans, Nerve axon equations. IV. The stable and the unstable
impulse, Indiana Univ. Math. J. 24 (1974/75),
no. 12, 1169–1190. MR 0393891
(52 #14698)
 9.
Heinrich
Freistühler and TaiPing
Liu, Nonlinear stability of overcompressive shock waves in a
rotationally invariant system of viscous conservation laws, Comm.
Math. Phys. 153 (1993), no. 1, 147–158. MR 1213739
(94f:35084)
 10.
R. Gardner and K. Zumbrun, A geometric condition for stability of undercompressive viscous shock waves, Preprint, 1997, to appear in CPAM.
 11.
E. Isaacson, D. Marchesin, and B. Plohr, Riemann problem package, Unpublished software, available at ftp://ftp.ams.sunysb.edu/pub/rp.
 12.
Christopher
K. R. T. Jones, Robert
Gardner, and Todd
Kapitula, Stability of travelling waves for nonconvex scalar
viscous conservation laws, Comm. Pure Appl. Math. 46
(1993), no. 4, 505–526. MR 1211740
(94c:35123), http://dx.doi.org/10.1002/cpa.3160460404
 13.
Todd
Kapitula and Björn
Sandstede, Stability of bright solitarywave solutions to perturbed
nonlinear Schrödinger equations, Phys. D 124
(1998), no. 13, 58–103. MR 1662530
(99h:35199), http://dx.doi.org/10.1016/S01672789(98)001729
 14.
Tosio
Kato, Perturbation theory for linear operators, Classics in
Mathematics, SpringerVerlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
(96a:47025)
 15.
TaiPing
Liu, Nonlinear stability of shock waves for viscous conservation
laws, Mem. Amer. Math. Soc. 56 (1985), no. 328,
v+108. MR
791863 (87a:35127), http://dx.doi.org/10.1090/memo/0328
 16.
TaiPing
Liu, On the viscosity criterion for hyperbolic conservation
laws, Viscous profiles and numerical methods for shock waves (Raleigh,
NC, 1990), SIAM, Philadelphia, PA, 1991, pp. 105–114. MR 1142645
(92k:35182)
 17.
Daniel
Michelson, Bunsen flames as steady solutions of the
KuramotoSivashinsky equation, SIAM J. Math. Anal. 23
(1992), no. 2, 364–386. MR 1147869
(92j:35179), http://dx.doi.org/10.1137/0523019
 18.
Daniel
Michelson, Stability of the Bunsen flame profiles in the
KuramotoSivashinsky equation, SIAM J. Math. Anal. 27
(1996), no. 3, 765–781. MR 1382832
(97b:80009), http://dx.doi.org/10.1137/0527041
 19.
D.
M. Michelson and G.
I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in
laminar flames. II. Numerical experiments, Acta Astronaut.
4 (1977), no. 1112, 1207–1221. MR 0671098
(58 #32374)
 20.
O.
A. Oleĭnik, Uniqueness and stability of the generalized
solution of the Cauchy problem for a quasilinear equation, Uspehi
Mat. Nauk 14 (1959), no. 2 (86), 165–170
(Russian). MR
0117408 (22 #8187)
 21.
Bruce
P. Palka, An introduction to complex function theory,
Undergraduate Texts in Mathematics, SpringerVerlag, New York, 1991. MR 1078017
(92b:30001)
 22.
A.
M. Blokhin and D.
L. Tkachev, Mixed problems for the wave equation in coordinate
domains, Nova Science Publishers, Inc., Commack, NY, 1998. MR 1663796
(99m:35137)
 1.
 J. Alexander, R. Gardner, and C.K.R.T. Jones, A topological invariant arising in the analysis of traveling waves, J. Reine Angew. Math. 410 (1990), 167212. MR 92d:58028
 2.
 L.Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. dissertation, Indiana University, May 1998.
 3.
 J.C. Butcher, The numerical analysis of ordinary differential equations: RungeKutta and general linear methods, John Wiley and Sons, New York, 1987. MR 88d:65002
 4.
 W.A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Massachusetts, 1965. MR 32:7875
 5.
 J.W. Evans, Nerve axon equations. I. Linear approximations, Indiana University Mathematics Journal 21 (1972), 877885. MR 45:1616
 6.
 , Nerve axon equations: II. Stability at rest, Indiana University Mathematics Journal 22 (1972), 7590. MR 48:1729
 7.
 , Nerve axon equations. III. Stability of the nerve impulse, Indiana University Mathematics Journal 22 (1972), 577593. MR 52:14697
 8.
 , Nerve axon equations. IV. The stable and the unstable impulse, Indiana University Mathematics Journal 24 (1975), 11691190. MR 52:14698
 9.
 H. Freistuhler and T.P. Liu, Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws, Communications in Mathematical Physics 153 (1993), 147158. MR 94f:35084
 10.
 R. Gardner and K. Zumbrun, A geometric condition for stability of undercompressive viscous shock waves, Preprint, 1997, to appear in CPAM.
 11.
 E. Isaacson, D. Marchesin, and B. Plohr, Riemann problem package, Unpublished software, available at ftp://ftp.ams.sunysb.edu/pub/rp.
 12.
 C.K.R.T. Jones, R. Gardner, and T. Kapitula, Stability of traveling waves for nonconvex scalar viscous conservation laws, Communications in Pure and Applied Math 46 (1993), no. 4, 505526. MR 94c:35123
 13.
 T. Kapitula and B. Sandstede, Stability of bright solitarywave solutions to perturbed nonlinear Schrödinger equations, Phys. D 124 (1998) 58103. MR 99h:35199
 14.
 T. Kato, Perturbation theory for linear operators, SpringerVerlag, 1995. MR 96a:47025
 15.
 T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Memoirs AMS 56 (1985), no. 328. MR 87a:35127
 16.
 , On the viscosity criterion for hyperbolic conservation laws, viscous profiles and numerical methods for shock waves, SIAM (1991), 105114.MR 92k:35182
 17.
 D. Michelson, Bunsen flames as steady solutions of the KuramotoSivashinsky equation, SIAM Journal of Mathematical Analysis 23 (1992), no. 2, 364386. MR 92j:35179
 18.
 , Stability of the Bunsen flame profiles in the KuramotoSivashinsky equation, SIAM Journal of Mathematical Analysis 27 (1996), no. 3, 765781. MR 97b:80009
 19.
 D.M. Michelson and G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. II. Numerical experiments, Acta Astronautica 4 (1977), 12071221. MR 58:32374
 20.
 O. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, Usp. Mat. Nauk. 14 (1959) 165170; English translation in Amer. Math. Soc. Transl. Ser. 2, 1964, 285290. MR 22:8187
 21.
 B.P. Palka, An introduction to complex function theory, SpringerVerlag, 1991.MR 92b:30001
 22.
 K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (1998) 741871. MR 99m:35137
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
35B35,
65L70,
3504,
35L65
Retrieve articles in all journals
with MSC (2000):
35B35,
65L70,
3504,
35L65
Additional Information
Leon Q. Brin
Affiliation:
Southern Connecticut State University, Department of Mathematics, New Haven, Connecticut 06515
Email:
brin@southernct.edu
DOI:
http://dx.doi.org/10.1090/S0025571800012370
PII:
S 00255718(00)012370
Received by editor(s):
January 4, 1999
Received by editor(s) in revised form:
June 24, 1999
Published electronically:
November 27, 2000
Article copyright:
© Copyright 2000
American Mathematical Society
