Spherical MarcinkiewiczZygmund inequalities and positive quadrature
Authors:
H. N. Mhaskar, F. J. Narcowich and J. D. Ward
Journal:
Math. Comp. 70 (2001), 11131130
MSC (2000):
Primary 65D32; Secondary 41A17, 42C10
Published electronically:
March 1, 2000
Corrigendum:
Math. Comp. 71 (2002), 453454
MathSciNet review:
1710640
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Geodetic and meteorological data, collected via satellites for example, are genuinely scattered and not confined to any special set of points. Even so, known quadrature formulas used in numerically computing integrals involving such data have had restrictions either on the sites (points) used or, more significantly, on the number of sites required. Here, for the unit sphere embedded in , we obtain quadrature formulas that are exact for spherical harmonics of a fixed order, have nonnegative weights, and are based on function values at scattered sites. To be exact, these formulas require only a number of sites comparable to the dimension of the space. As a part of the proof, we derive MarcinkiewiczZygmund inequalities for such sites.
 1.
L.
Bos, N.
Levenberg, P.
Milman, and B.
A. Taylor, Tangential Markov inequalities characterize algebraic
submanifolds of 𝑅^{𝑁}, Indiana Univ. Math. J.
44 (1995), no. 1, 115–138. MR 1336434
(96i:41009), http://dx.doi.org/10.1512/iumj.1995.44.1980
 2.
James
R. Driscoll and Dennis
M. Healy Jr., Computing Fourier transforms and convolutions on the
2sphere, Adv. in Appl. Math. 15 (1994), no. 2,
202–250. MR 1277214
(95h:65108), http://dx.doi.org/10.1006/aama.1994.1008
 3.
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers,
Ltd., London, 1958. MR 0117523
(22 #8302)
 4.
T. Erdélyi, Notes on inequalities with doubling weights, J. Approx. Theory 100 (1999), 6072. CMP 2000:01
 5.
Harley
Flanders, Differential forms with applications to the physical
sciences, Academic Press, New YorkLondon, 1963. MR 0162198
(28 #5397)
 6.
W. Freeden, O. Glockner, and M. Schreiner, Spherical Panel Clustering and Its Numerical Aspects, AGTM Report No. 183, University of Kaiserlautern, Geomathematics Group, 1997.
 7.
W. Freeden and U. Windheuser, Spherical Wavelet Transform and Its Discretization, AGTM Report No. 125, University of Kaiserlautern, Geomathematics Group, 1995.
 8.
J.M.
Goethals and J.
J. Seidel, Cubature formulae, polytopes, and spherical
designs, The geometric vein, Springer, New YorkBerlin, 1981,
pp. 203–218. MR 661779
(83k:05033)
 9.
Richard
B. Holmes, Geometric functional analysis and its applications,
SpringerVerlag, New YorkHeidelberg, 1975. Graduate Texts in Mathematics,
No. 24. MR
0410335 (53 #14085)
 10.
Kurt
Jetter, Joachim
Stöckler, and Joseph
D. Ward, Error estimates for scattered data
interpolation on spheres, Math. Comp.
68 (1999), no. 226, 733–747. MR 1642746
(99i:41032), http://dx.doi.org/10.1090/S0025571899010807
 11.
K.
Jetter, J.
Stöckler, and J.
D. Ward, Norming sets and spherical cubature formulas,
Advances in computational mathematics (Guangzhou, 1997) Lecture Notes in
Pure and Appl. Math., vol. 202, Dekker, New York, 1999,
pp. 237–244. MR 1661538
(99i:65022)
 12.
G. Mastoianni and V. Totik, Weighted polynomial inequalities with doubling and weights, to appear in J. London Math. Soc.
 13.
H. N. Mhaskar, F. J. Narcowich and J. D. Ward, Approximation Properties of Zonal Function Networks Using Scattered Data on the Sphere, Adv. in Comp. Math., to appear.
 14.
H. N. Mhaskar and J. Prestin, MarcinkiewiczZygmund Inequalities, in Approximation Theory: In Memory of A. K. Varma, (N. K. Govil, R. N. Mohapatra, Z. Nashed, A. Sharma, and J. Szabados Eds.), Marcel Dekker, to appear.
 15.
Claus
Müller, Spherical harmonics, Lecture Notes in
Mathematics, vol. 17, SpringerVerlag, BerlinNew York, 1966. MR 0199449
(33 #7593)
 16.
Pencho
P. Petrushev, Approximation by ridge functions and neural
networks, SIAM J. Math. Anal. 30 (1999), no. 1,
155–189 (electronic). MR 1646689
(99g:41031), http://dx.doi.org/10.1137/S0036141097322959
 17.
Daniel
Potts, Gabriele
Steidl, and Manfred
Tasche, Fast algorithms for discrete
polynomial transforms, Math. Comp.
67 (1998), no. 224, 1577–1590. MR 1474655
(99b:65183), http://dx.doi.org/10.1090/S0025571898009752
 18.
Elias
M. Stein, Interpolation in polynomial classes and Markoff’s
inequality, Duke Math. J. 24 (1957), 467–476.
MR
0091368 (19,956b)
 19.
Elias
M. Stein and Guido
Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical
Series, No. 32. MR 0304972
(46 #4102)
 20.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 21.
A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392400.
 1.
 L. Bos, N. Levenberg, P. Milman, and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of , Ind. Univ. Math. J., 44 (1995), 115138. MR 96i:41009
 2.
 J. R. Driscoll and D. M. Healy, Computing Fourier Transforms and Convolutions for the 2Sphere, Adv. in Appl. Math., 15 (1994), 202250. MR 95h:65108
 3.
 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958. MR 22:8302
 4.
 T. Erdélyi, Notes on inequalities with doubling weights, J. Approx. Theory 100 (1999), 6072. CMP 2000:01
 5.
 H. Flanders, Differential Forms, Academic Press, New York, 1963. MR 28:5397
 6.
 W. Freeden, O. Glockner, and M. Schreiner, Spherical Panel Clustering and Its Numerical Aspects, AGTM Report No. 183, University of Kaiserlautern, Geomathematics Group, 1997.
 7.
 W. Freeden and U. Windheuser, Spherical Wavelet Transform and Its Discretization, AGTM Report No. 125, University of Kaiserlautern, Geomathematics Group, 1995.
 8.
 J. M. Goethals and J. J. Seidel, Cubature formulae, polytopes, and spherical designs, in The Geometric Vein, Coexeter Festschrift, (C. Davis et al., eds.), Springer, New York, 1981, pp. 203218. MR 83k:05033
 9.
 R. B. Holmes, Geometric functional analysis and its applications, SpringerVerlag, New York, 1975. MR 53:14085
 10.
 K. Jetter, J. Stöckler, and J. D. Ward, Error estimates for scattered data interpolation, Math. Comp., 68 (1999), 743747. MR 99i:41032
 11.
 K. Jetter, J. Stöckler, and J. D. Ward, Norming sets and spherical cubature formulas, in Computational Mathematics, (Chen, Li, C. Micchelli, Y. Xu, eds.), Marcel Decker, New York, 1998, pp. 237245. MR 99i:65022
 12.
 G. Mastoianni and V. Totik, Weighted polynomial inequalities with doubling and weights, to appear in J. London Math. Soc.
 13.
 H. N. Mhaskar, F. J. Narcowich and J. D. Ward, Approximation Properties of Zonal Function Networks Using Scattered Data on the Sphere, Adv. in Comp. Math., to appear.
 14.
 H. N. Mhaskar and J. Prestin, MarcinkiewiczZygmund Inequalities, in Approximation Theory: In Memory of A. K. Varma, (N. K. Govil, R. N. Mohapatra, Z. Nashed, A. Sharma, and J. Szabados Eds.), Marcel Dekker, to appear.
 15.
 C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17, Springer Verlag, Berlin, 1966. MR 33:7593
 16.
 P. Petrushev, Approximation by Ridge Functions and Neural Networks, SIAM J. Math. Anal., 30 (1999), 155189. MR 99g:41031
 17.
 D. Potts, G. Steidl, and M. Tasche, Fast algorithms for discrete polynomial transforms, Math. Comp., 67 (1998), 15771590. MR 99b:65183
 18.
 E. M. Stein, Interpolation in polynomial classes and Markoff's inequality, Duke Math. J., 24 (1957), 467476. MR 19:956b
 19.
 E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, New Jersey, 1971. MR 46:4102
 20.
 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, 1975. MR 51:8724
 21.
 A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392400.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
65D32,
41A17,
42C10
Retrieve articles in all journals
with MSC (2000):
65D32,
41A17,
42C10
Additional Information
H. N. Mhaskar
Affiliation:
Department of Mathematics, California State University, Los Angeles, CA 90032
Email:
hmhaskar@calstatela.edu
F. J. Narcowich
Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 778433368
Email:
fnarc@math.tamu.edu
J. D. Ward
Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 778433368
Email:
jward@math.tamu.edu
DOI:
http://dx.doi.org/10.1090/S0025571800012400
PII:
S 00255718(00)012400
Keywords:
MarcinkiewiczZygmund inequalities,
quadrature,
scattereddata on spheres
Received by editor(s):
January 26, 1999
Received by editor(s) in revised form:
August 25, 1999
Published electronically:
March 1, 2000
Additional Notes:
Research of the authors was sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant numbers F496209710211 and F496209810204. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.
Article copyright:
© Copyright 2000
American Mathematical Society
