Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On stable numerical differentiation


Authors: Alexander G. Ramm and Alexandra B. Smirnova
Journal: Math. Comp. 70 (2001), 1131-1153
MSC (2000): Primary 65D25; Secondary 65D05
DOI: https://doi.org/10.1090/S0025-5718-01-01307-2
Published electronically: March 9, 2001
MathSciNet review: 1826578
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

A new approach to the construction of finite-difference methods is presented. It is shown how the multi-point differentiators can generate regularizing algorithms with a stepsize $h$ being a regularization parameter. The explicitly computable estimation constants are given. Also an iteratively regularized scheme for solving the numerical differentiation problem in the form of Volterra integral equation is developed.


References [Enhancements On Off] (What's this?)

  • 1. R. G. Airapetyan, A. G. Ramm, A. B. Smirnova, ``Continuous methods for solving nonlinear ill-posed problems'', Operator theory and applications, Fields Institute Communications, 25, Amer. Math. Soc., Providence, RI, 2000, pp. 111-138. CMP 2000:13
  • 2. R. S. Anderssen, P. Bloomfield, Numerical differentiation procedures for non-exact data, Numer. Math. 22 (1973/74), 157-182. MR 50:1470
  • 3. R. S. Anderssen, F. R. de Hoog, Finite difference methods for the numerical differentiation of non-exact data, Computing 33 (1984), 259-267. MR 86e:65032
  • 4. J. Cullum, Numerical differentiation and regularization, SIAM J. Numer. Analysis. 8 (1971), 254-265. MR 44:7747
  • 5. T. F. Dolgopolova, Finite dimensional regularization in the case of numerical differentiation of periodic functions, Ural. Gos. Univ. Mat. Zap. 7(4) (1970), 27-33. MR 44:6148
  • 6. T. F. Dolgopolova, V. K. Ivanov, Numerical differentiation, Comp. Math and Math. Physics. 6(3) (1966), 570-576. MR 33:8098
  • 7. Yu. V. Egorov, V. A. Kondrat'ev, On a problem of numerical differentiation, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (1989), 80-81. MR 91a:65048
  • 8. V. K. Ivanov, On linear problems, which are not well-posed, Doklady Akad. Nauk SSSR. 145(2) (1962), 270-272. MR 25:4357
  • 9. I. Knowles, R. Wallace, A variational method for numerical differentiation, Numer. Math. 70 (1995), 91-110. MR 96h:65031
  • 10. E. V. Kolpakova, Numerical solution of the problem of reconstructing the derivative, Differencial'nye Uravnenija i Vychisl. Mat. 6 (1976), 137-143. MR 58:8159
  • 11. C. Lanczos, Applied Analysis, Englewood Cliffs, N.J. Prentice-Hall, 1956. MR 18:823c
  • 12. T. Miller, A. G. Ramm, Estimates of the derivatives of random functions II, J. Math. Anal. Appl. 110 (1985), 429-435. MR 87f:93076
  • 13. C. K. Pallaghy, U. Luttge, Light-induced and $H^*$-ion fluxes and bioelectric phenomena in mesophyll cells of Atriplex Spongiosa, Zeit. fuer Pflanz. 62 (1970), 417-425.
  • 14. D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Machinery. 9(1) (1962), 84-97. MR 24:B534
  • 15. R. Qu, A new approach to numerical differentiation and regularization, Math. Comput. Modelling. 24(10) (1996), 55-68. MR 98b:65024
  • 16. A. G. Ramm, On numerical differentiation, Izv. Vyssh. Uchebn. Zaved. Mat., 11 (1968), 131-135. MR 40:5130
  • 17. -, Simplified optimal differentiators, Radiotech.i Electron. 17 (1972), 1325-1328.
  • 18. -, On simultaneous approximation of a function and its derivative by interpolation polynomials, Bull. Lond. Math. Soc. 9 (1977), 283-288. MR 58:6823
  • 19. -, Stable solutions of some ill-posed problems, Math. Methods Appl. Sci. 3 (1981), 336-363. MR 83i:65102
  • 20. -, Estimates of the derivatives of random functions, J. Math. Anal. Appl., 102 (1984), 244-250. MR 85m:93040
  • 21. -, Random fields estimation theory, Longman Scientific and Wiley, New York, 1990. MR 92g:00012
  • 22. -, Inequalities for the derivatives, Math. Inequal. Appl., 3 (2000), 129-132. MR 2000i:65026
  • 23. A. G. Ramm, A. I. Katsevich, The Radon transform and local tomography, CRC Press, Boca Raton, Florida, 1996. MR 97g:44009
  • 24. T. J. Rivlin, Optimally stable Lagrangian numerical differentiation, SIAM J. Numer. Anal. 12(5) (1975), 712-725. MR 53:11968
  • 25. H. E. Salzer, Some problems in optimally stable Lagrangian differentiation, Math. Comp. 28 (1974), 1105-1115. MR 51:4632
  • 26. A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, John Wiley and Sons, New York, 1977. MR 56:13604
  • 27. V. V. Vasin, Regularization of a numerical differentiation problem, Ural. Gos. Univ. Mat. Zap. 7(2) (1969), 29-33. MR 43:5726
  • 28. V. V. Vasin, The stable evaluation of a derivative in $C(-\infty,\infty)$, Comp. Math and Math. Physics. 13(6) (1973), 1383-1389. MR 49:11807
  • 29. V. V. Vasin, A. L. Ageev, Ill-posed problems with a priori information, VSP, Utrecht, 1995. MR 97j:65100

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65D25, 65D05

Retrieve articles in all journals with MSC (2000): 65D25, 65D05


Additional Information

Alexander G. Ramm
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602
Email: ramm@math.ksu.edu

Alexandra B. Smirnova
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602
Email: matabs@zeus.cs.gsu.edu

DOI: https://doi.org/10.1090/S0025-5718-01-01307-2
Keywords: Numerical differentiation, noisy data, ill-posed problems, multi-point methods, regularization
Received by editor(s): August 5, 1999
Published electronically: March 9, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society