Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A dual-dual mixed formulation for nonlinear exterior transmission problems


Authors: Gabriel N. Gatica and Salim Meddahi
Journal: Math. Comp. 70 (2001), 1461-1480
MSC (2000): Primary 65N30, 65N38, 65J15, 35J65, 35J05
DOI: https://doi.org/10.1090/S0025-5718-00-01267-9
Published electronically: May 23, 2000
MathSciNet review: 1836913
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We combine a dual-mixed finite element method with a Dirichlet-to-Neumann mapping (derived by the boundary integral equation method) to study the solvability and Galerkin approximations of a class of exterior nonlinear transmission problems in the plane. As a model problem, we consider a nonlinear elliptic equation in divergence form coupled with the Laplace equation in an unbounded region of the plane. Our combined approach leads to what we call a dual-dual mixed variational formulation since the main operator involved has itself a dual-type structure. We establish existence and uniqueness of solution for the continuous and discrete formulations, and provide the corresponding error analysis by using Raviart-Thomas elements. The main tool of our analysis is given by a generalization of the usual Babuska-Brezzi theory to a class of nonlinear variational problems with constraints.


References [Enhancements On Off] (What's this?)

  • 1. G.R. BARRENECHEA, G.N. GATICA AND J.-M. THOMAS, Primal mixed formulations for the coupling of FEM and BEM. Part I: Linear problems, Numerical Functional Analysis and Optimization, 19 (1998), pp. 7-32. MR 99d:65310
  • 2. F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991. MR 92d:65187
  • 3. U. BRINK, C. CARSTENSEN AND E. STEIN, Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics, Numerische Mathematik, 75 (1996), pp. 153-174. MR 98g:65106
  • 4. C. CARSTENSEN AND E.P. STEPHAN, Adaptive coupling of boundary elements and finite elements, Mathematical Modelling and Numerical Analysis, 29 (1995), pp. 779-817. MR 97e:65134
  • 5. M. COSTABEL, Boundary integral operators on Lipschitz domains: Elementary results, SIAM Journal on Mathematical Analysis, 19 (1988), pp. 613-621. MR 89h:35090
  • 6. M. COSTABEL AND E.P. STEPHAN, Coupling of finite and boundary element methods for an elasto-plastic interface problem, SIAM Journal on Numerical Analysis, 27(5) (1990), pp. 1212-1226. MR 92c:65125
  • 7. M. FEISTAUER, Mathematical and numerical study of nonlinear problems in fluid mechanics. In Proc. Conf. Equadiff 6, edited by J. Vosmansky and M. Zlámal, Brno 1985, Springer, Berlin, pp. 3-16. MR 88f:76002
  • 8. M. FEISTAUER, On the finite element approximation of a cascade flow problem, Numerische Mathematik, 50 (1987), pp. 655-684. MR 88h:65205
  • 9. K. FENG, Finite element method and natural boundary reduction. In Proc. Inter. Congress of Mathematics, Polish Academy of Sciences, Warsaw 1983, pp. 1439-1453. MR 87i:65181
  • 10. G.N. GATICA, On the Coupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems, Ph.D. Dissertation, University of Delaware, (1989).
  • 11. G.N. GATICA, Combination of mixed finite element and Dirichlet-to-Neumann methods in nonlinear plane elasticity, Applied Mathematics Letters, 10 (1997), pp. 29-35. MR 98g:73039
  • 12. G.N. GATICA, Solvability and Galerkin approximations of a class of nonlinear operator equations, Technical Report 99-03, Departamento de Ingeniería Matemática, Universidad de Concepción, (1999). http://www.ing-mat.udec.cl/inf-loc-dim.html
  • 13. G.N. GATICA AND N. HEUER, Minimum residual iteration for a dual-dual mixed formulation of exterior transmission problems, Technical Report 99-07, Departamento de Ingeniería Matemática, Universidad de Concepción, (1999). http://www.ing-mat.udec.cl/inf-loc-dim.html
  • 14. G.N. GATICA AND N. HEUER, An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method, Technical Report 99-08, Departamento de Ingeniería Matemática, Universidad de Concepción, (1999). http://www.ing-mat.udec.cl/inf-loc-dim.html. To appear in Journal of Computational and Applied Mathematics.
  • 15. G.N. GATICA AND N. HEUER, Conjugate gradient method for dual-dual mixed formulations, Technical Report 99-16, Departamento de Ingeniería Matemática, Universidad de Concepción, (1999). http://www.ing-mat.udec.cl/inf-loc-dim.html
  • 16. G.N. GATICA AND G.C. HSIAO, On a class of variational formulations for some nonlinear interface problems, Rendiconti di Matematica e delle sue Applicazione, 10(4) (1990), pp. 681-715. MR 92m:35089
  • 17. G.N. GATICA AND G.C. HSIAO, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in $\mathbf{ R}^2$, Numerische Mathematik, 61 (1992), pp. 171-214. MR 92j:65179
  • 18. G.N. GATICA AND G.C. HSIAO, Boundary-Field Equation Methods for a Class of Nonlinear Problems, Pitman Research Notes in Mathematics Series, vol. 331, Longman, 1995. MR 97k:65269
  • 19. G.N. GATICA AND G.C. HSIAO, The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems, Journal of Mathematical Analysis and Applications, 189 (1995), pp. 442-461. MR 96b:65110
  • 20. G.N. GATICA AND W.L. WENDLAND, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems, Applicable Analysis, 63 (1996), pp. 39-75. MR 99a:65167
  • 21. G.N. GATICA AND W.L. WENDLAND, Coupling of mixed finite elements and boundary elements for a hyperelastic interface problem, SIAM Journal on Numerical Analysis, 34 (1997), pp. 2335-2356. MR 98i:65098
  • 22. V. GIRAULT AND P.A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations: Theory and Algorithms, Springer, Berlin Heidelberg New York, 1986.
  • 23. D. GIVOLI, Numerical Methods for Problems in Infinite Domains. Elsevier Science Publishers B.V. (1992), Studies in Applied Mechanics 33. MR 94j:65003
  • 24. H. HAN AND X. WU, The approximation of the exact boundary conditions at an artificial boundary for linear elastic equations and its application, Mathematics of Computation, 59 (1992), pp. 21-37. MR 92k:35076
  • 25. H. HAN AND W. BAO, The artificial boundary conditions for incompressible materials on an unbounded domain, Numerische Mathematik, 77 (1997), pp. 347-363. MR 98f:73037
  • 26. B. HEISE, Nonlinear field calculations with multigrid Newton methods, Impact of Computing in Science and Engineering, 5 (1993), pp. 75-110. MR 95a:78002
  • 27. B. HEISE, Analysis of a fully discrete finite element method for a nonlinear magnetic field problem, SIAM Journal on Numerical Analysis, 31(3) (1994), pp. 745-759. MR 95i:65156
  • 28. G.C. HSIAO AND S. ZHANG, Optimal order multigrid methods for solving exterior boundary value problems, SIAM Journal on Numerical Analysis, 31(3) (1994), pp. 680-694. MR 95e:65116
  • 29. R. KRESS, Linear Integral Equations, Springer-Verlag, 1989. MR 90j:45001
  • 30. S. MEDDAHI, An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements, SIAM Journal on Numerical Analysis, 35(4) (1998), pp. 1393-1415. MR 99f:65173
  • 31. S. MEDDAHI, J. VALDÉS, O. MENÉNDEZ, AND P. P´EREZ, On the coupling of boundary integral and mixed finite element methods, Journal of Computational and Applied Mathematics, 69 (1996), pp. 113-124. MR 97e:65137
  • 32. J. NECAS, Introduction to the Theory of Nonlinear Elliptic Equation, John Wiley & Sons, 1986. MR 87m:35053
  • 33. J.E. ROBERTS AND J.-M. THOMAS, Mixed and Hybrid Methods, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions, vol. II, Finite Element Methods (Part 1), 1991, North-Holland, Amsterdam. CMP 91:14
  • 34. E.P. STEPHAN, Coupling of finite elements and boundary elements for some nonlinear interface problems, Computer Methods in Applied Mechanics and Engineering, 101 (1992), pp. 61-72. MR 93j:73019
  • 35. A. ZENISEK, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations, Academic Press, London, 1990. MR 92c:65003

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N38, 65J15, 35J65, 35J05

Retrieve articles in all journals with MSC (2000): 65N30, 65N38, 65J15, 35J65, 35J05


Additional Information

Gabriel N. Gatica
Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Email: ggatica@ing-mat.udec.cl

Salim Meddahi
Affiliation: Departamento de Matemáticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, España
Email: salim@orion.ciencias.uniovi.es

DOI: https://doi.org/10.1090/S0025-5718-00-01267-9
Keywords: Mixed finite elements, boundary elements, coupling
Received by editor(s): April 13, 1999
Received by editor(s) in revised form: October 13, 1999
Published electronically: May 23, 2000
Additional Notes: This research was partially supported by Fondecyt-Chile through research project 1980122, and by FONDAP-Conicyt through Program A on Numerical Analysis.
Dedicated: Dedicated to Professor Dr. George C. Hsiao on the occasion of his 65th birthday
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society