Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the distribution of inversive congruential pseudorandom numbers in parts of the period


Authors: Harald Niederreiter and Igor E. Shparlinski
Journal: Math. Comp. 70 (2001), 1569-1574
MSC (2000): Primary 11K45, 65C10; Secondary 11K38, 11L07, 11T23
DOI: https://doi.org/10.1090/S0025-5718-00-01273-4
Published electronically: June 12, 2000
MathSciNet review: 1836919
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

The inversive congruential method is an attractive alternative to the classical linear congruential method for pseudorandom number generation. In this paper we present the first nontrivial bounds on the discrepancy of individual sequences of inversive congruential pseudorandom numbers in parts of the period. The proof is based on a new bound for certain incomplete exponential sums.


References [Enhancements On Off] (What's this?)

  • 1. T. Cochrane, `On a trigonometric inequality of Vinogradov', J. Number Theory, 27 (1987), 9-16. MR 88k:11053
  • 2. J. Eichenauer-Herrmann and F. Emmerich, `Compound inversive congruential pseudorandom numbers: an average-case analysis', Math. Comp., 65 (1996), 215-225. MR 96i:65005
  • 3. J. Eichenauer-Herrmann, F. Emmerich, and G. Larcher, `Average discrepancy, hyperplanes, and compound pseudorandom numbers', Finite Fields Appl., 3 (1997), 203-218. MR 98j:11059
  • 4. J. Eichenauer-Herrmann, E. Herrmann, and S. Wegenkittl, `A survey of quadratic and inversive congruential pseudorandom numbers', Lect. Notes in Statistics, Springer-Verlag, Berlin, 127 (1998), 66-97.
  • 5. M. Flahive and H. Niederreiter, `On inversive congruential generators for pseudorandom numbers', Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), Marcel Dekker, New York, 1993, 75-80. MR 94a:11117
  • 6. J.B. Friedlander, D. Lieman, and I.E. Shparlinski, `On the distribution of the RSA generator', Sequences and Their Applications (C. Ding, T. Helleseth, and H. Niederreiter, eds.), Springer-Verlag, London, 1999, 205-212.
  • 7. R. Lidl and H. Niederreiter, `Finite fields and their applications', Handbook of Algebra (M. Hazewinkel, ed.), Vol. 1, Elsevier, Amsterdam, 1996, 321-363. MR 97i:11114
  • 8. R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge, 1997. MR 97i:11115
  • 9. H. Niederreiter, `The serial test for congruential pseudorandom numbers generated by inversions', Math. Comp., 52 (1989), 135-144.
  • 10. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992. MR 93h:65008
  • 11. H. Niederreiter, `Finite fields, pseudorandom numbers, and quasirandom points', Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), Marcel Dekker, New York, 1993, 375-394. MR 94a:11121
  • 12. H. Niederreiter, `New developments in uniform pseudorandom number and vector generation', Lect. Notes in Statistics, Springer-Verlag, Berlin, 106 (1995), 87-120. MR 97k:65019
  • 13. H. Niederreiter and I.E. Shparlinski, `On the distribution and lattice structure of nonlinear congruential pseudorandom numbers', Finite Fields Appl., 5 (1999), 246-253. CMP 99:17
  • 14. S.B. Steckin, `An estimate of a complete rational trigonometric sum', Trudy Mat. Inst. Steklov., 143 (1977), 188-207 (in Russian). MR 58:543

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11K45, 65C10, 11K38, 11L07, 11T23

Retrieve articles in all journals with MSC (2000): 11K45, 65C10, 11K38, 11L07, 11T23


Additional Information

Harald Niederreiter
Affiliation: Institute of Discrete Mathematics, Austrian Academy of Sciences, Sonnenfelsgasse 19, A–1010 Vienna, Austria
Email: niederreiter@oeaw.ac.at

Igor E. Shparlinski
Affiliation: Department of Computing, Macquarie University, New South Wales 2109, Australia
Email: igor@comp.mq.edu.au

DOI: https://doi.org/10.1090/S0025-5718-00-01273-4
Keywords: Pseudorandom numbers, inversive congruential method, discrepancy, exponential sums
Received by editor(s): November 17, 1998
Received by editor(s) in revised form: November 19, 1999
Published electronically: June 12, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society