Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of a splitting method of high order for reaction-diffusion systems


Author: Stéphane Descombes
Journal: Math. Comp. 70 (2001), 1481-1501
MSC (2000): Primary 65M12, 65B05, 65J15
DOI: https://doi.org/10.1090/S0025-5718-00-01277-1
Published electronically: July 11, 2000
MathSciNet review: 1836914
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In this article, we prove the convergence of a splitting scheme of high order for a reaction-diffusion system of the form $u_t-M\Delta u +F(u)=0$ where $M$ is an $m \times m$ matrix whose spectrum is included in $\{{\mathfrak{R}} z > 0 \}$. This scheme is obtained by applying a Richardson extrapolation to a Strang formula.


References [Enhancements On Off] (What's this?)

  • 1. S. Descombes, M. Schatzman, Directions alternées d'ordre élevé en réaction-diffusion, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 11, 1521-1524. MR 96g:65104
  • 2. S. Descombes, M. Schatzman, On Richardson Extrapolation of Strang's Formula for Reaction-Diffusion Equations, in Equations aux Dérivées Partielles et Applications, articles dédiés à Jacques-Louis Lions, Gauthier-Villars Elsevier, Paris, 1998. MR 99i:65006
  • 3. B. O. Dia, M. Schatzman, Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées, RAIRO Modèl. Math. Anal. Numér. 30 (1996), no. 3, 343-383. MR 97e:47055
  • 4. B. O. Dia, M. Schatzman, An estimate of the Kac transfer operator, J. Funct. Anal. 145 (1997), no. 1, 108-135. MR 98h:47057
  • 5. B. O. Dia, M. Schatzman, On the order of extrapolation of integration formulæ, Preprint no 275, Equipe d'Analyse Numérique Lyon-Saint Etienne, UMR 5585, 1998.
  • 6. P. de Mottoni, M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., Volume 347, Number 5, (1995), 1533-1589. MR 2000a:35022
  • 7. D. Goldman, L. Sirovich, A novel method for simulating the complex Ginzburg-Landau equation, Quart. Appl. Math. 53 (1995), no. 2, 315-333. MR 96a:35190
  • 8. D. Goldman, T. Kaper, $N$th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33 (1996), no. 1, 349-367. MR 97a:65063
  • 9. B. Helffer, Around the Transfer Operator and the Trotter-Kato Formula, Operator Theory: Advances and Appl. 78, 161-174 (1995). MR 96k:82013
  • 10. D. Henry, Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. MR 83j:35084
  • 11. T. Ichinose, S. Takanobu, Estimate of the difference between the Kac operator and the Schrödinger semigroup, Comm. in Math. Phys. 186, (1997) 167-197. MR 99e:47052
  • 12. Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA J. Numer. Anal. 9, Number 2, (1989), 199-212. MR 90g:65163
  • 13. J. Smoller, Shock waves and reaction-diffusion equations. Springer-Verlag, New York, 1994. MR 95g:35002
  • 14. G. Strang, Accurate Partial Difference Method. I: Linear Cauchy Problems, Arch. Rat. Mech. Anal. 12, (1963), 392-402. MR 26:4489
  • 15. G. Strang, On the Construction and Comparison of Difference Schemes, SIAM J. Numer. Anal. 5, (1968), 507-517. MR 38:4057

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65M12, 65B05, 65J15

Retrieve articles in all journals with MSC (2000): 65M12, 65B05, 65J15


Additional Information

Stéphane Descombes
Affiliation: Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669, Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, 69364 Lyon Cedex 07, France
Email: stephane.descombes@umpa.ens-lyon.fr

DOI: https://doi.org/10.1090/S0025-5718-00-01277-1
Keywords: Splitting, reaction-diffusion systems
Received by editor(s): November 10, 1998
Received by editor(s) in revised form: November 29, 1999
Published electronically: July 11, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society