On Iwasawa -invariants of cyclic cubic fields of prime conductor
Authors:
Takashi Fukuda and Keiichi Komatsu
Journal:
Math. Comp. 70 (2001), 1707-1712
MSC (2000):
Primary 11R23, 11R27, 11Y40
DOI:
https://doi.org/10.1090/S0025-5718-00-01284-9
Published electronically:
November 13, 2000
MathSciNet review:
1836928
Full-text PDF
Abstract | References | Similar Articles | Additional Information
For certain cyclic cubic fields , we verified that Iwasawa invariants
vanished by calculating units of abelian number field of degree 27. Our method is based on the explicit representation of a system of cyclotomic units of those fields.
- 1. H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math., 138, Springer-Verlag, New York, Heidelberg, Berlin, 1993. MR 94i:11105
- 2. T. Fukuda, A remark on the norm of cyclotomic units, (in Japanese) Sugaku 48 (1996), 89-90.
- 3.
T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa
-invariants of relative real cyclic extensions of degree
, Tokyo J. Math. 20-2 (1997) 475-480. MR 98k:11153
- 4. T. Fukuda and H. Taya, Computational research of Greenberg's conjecture for real quadratic fields, Mem. School Sci. Eng., Waseda Univ. 58 (1994), 175-203. MR 96b:11143
- 5. R. Gold and J. Kim, Bases for cyclotomic units, Compositio Math. 71 (1989), 12-27. MR 90h:11101
- 6. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. MR 53:5529
- 7. H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952. MR 14:141a
- 8.
A. Inatomi, On
-extensions of real abelian fields, Kodai Math. J. 12 (1989), 420-422. MR 90i:11119
- 9.
M. Ozaki and G. Yamamoto, Iwasawa
-invariants of certain cubic fields, preprint
- 10. W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Inv. Math. 62 (1980), 181-234. MR 82i:12004
- 11.
H. Taya, On p-adic zeta functions and
-extensions of certain totally real number fields, Tohoku Math. J. 51 (1999), 21-33. MR 2000b:11121
Retrieve articles in Mathematics of Computation with MSC (2000): 11R23, 11R27, 11Y40
Retrieve articles in all journals with MSC (2000): 11R23, 11R27, 11Y40
Additional Information
Takashi Fukuda
Affiliation:
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
Email:
fukuda@math.cit.nihon-u.ac.jp
Keiichi Komatsu
Affiliation:
Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169, Japan
Email:
kkomatsu@mse.waseda.ac.jp
DOI:
https://doi.org/10.1090/S0025-5718-00-01284-9
Keywords:
Iwasawa invariant,
cyclotomic unit,
cubic field
Received by editor(s):
August 5, 1999
Received by editor(s) in revised form:
January 6, 2000
Published electronically:
November 13, 2000
Article copyright:
© Copyright 2000
American Mathematical Society