Three and fourdimensional optimal lattice rules of moderate trigonometric degree
Authors:
Ronald Cools and James N. Lyness
Journal:
Math. Comp. 70 (2001), 15491567
MSC (2000):
Primary 41A55, 41A63, 42A10; Secondary 65D32
Published electronically:
May 14, 2001
MathSciNet review:
1836918
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A systematic search for optimal lattice rules of specified trigonometric degree over the hypercube has been undertaken. The search is restricted to a population of lattice rules . This includes those where the dual lattice may be generated by points for each of which . The underlying theory, which suggests that such a restriction might be helpful, is presented. The general character of the search is described, and, for , and , , a list of optimal rules is given. It is not known whether these are also optimal rules in the general sense; this matter is discussed.
 [BC93]
Marc
Beckers and Ronald
Cools, A relation between cubature formulae of trigonometric degree
and lattice rules, Numerical integration, IV (Oberwolfach, 1992)
Internat. Ser. Numer. Math., vol. 112, Birkhäuser, Basel, 1993,
pp. 13–24. MR 1248391
(95b:65034)
 [CNR99]
R.
Cools, E.
Novak, and K.
Ritter, Smolyak’s construction of cubature formulas of
arbitrary trigonometric degree, Computing 62 (1999),
no. 2, 147–162. MR 1694268
(2000c:41041), http://dx.doi.org/10.1007/s006070050018
 [CR97]
Ronald
Cools and Andrew
Reztsov, Different quality indexes for lattice rules, J.
Complexity 13 (1997), no. 2, 235–258. MR 1465148
(98e:65011), http://dx.doi.org/10.1006/jcom.1997.0443
 [CS96]
Ronald
Cools and Ian
H. Sloan, Minimal cubature formulae of
trigonometric degree, Math. Comp.
65 (1996), no. 216, 1583–1600. MR 1361806
(97a:65025), http://dx.doi.org/10.1090/S0025571896007673
 [Fro77]
K.
K. Frolov, The connection of quadrature formulas and sublattices of
the lattice of integer vectors, Dokl. Akad. Nauk SSSR
232 (1977), no. 1, 40–43 (Russian). MR 0427237
(55 #272)
 [GL87]
P.
M. Gruber and C.
G. Lekkerkerker, Geometry of numbers, 2nd ed., NorthHolland
Mathematical Library, vol. 37, NorthHolland Publishing Co.,
Amsterdam, 1987. MR 893813
(88j:11034)
 [KR95]
Bogdan
V. Klyuchnikov and Andrew
V. Reztsov, A relation between cubature formulas and densest
lattice packings, Proceedings of the XIX Workshop on Function Theory
(Beloretsk, 1994), 1995, pp. 557–570. MR 1407985
(97g:41045)
 [LS97]
J.
N. Lyness and I.
H. Sloan, Cubature rules of prescribed merit, SIAM J. Numer.
Anal. 34 (1997), no. 2, 586–602. MR 1442930
(97m:65052), http://dx.doi.org/10.1137/S0036142994267485
 [LS93]
J.
N. Lyness and T.
Sørevik, Lattice rules by component
scaling, Math. Comp. 61
(1993), no. 204, 799–820. MR 1185247
(94a:65011), http://dx.doi.org/10.1090/S00255718199311852476
 [Lyn88]
J.
N. Lyness, Some comments on quadrature rule construction
criteria, Numerical integration, III (Oberwolfach, 1987) Internat.
Schriftenreihe Numer. Math., vol. 85, Birkhäuser, Basel, 1988,
pp. 117–129. MR 1021529
(91b:65028)
 [Lyn89]
J.
N. Lyness, An introduction to lattice rules and their generator
matrices, IMA J. Numer. Anal. 9 (1989), no. 3,
405–419. MR 1011399
(91b:65029), http://dx.doi.org/10.1093/imanum/9.3.405
 [Min67]
H. Minkowski, Gesammelte Abhandlungen, Reprint (originally published in 2 volumes, Leipzig, 1911), Chelsea Publishing Company, 1967.
 [Mys85]
I.
P. Mysovskiĭ, Quadrature formulas of the highest
trigonometric degree of accuracy, Zh. Vychisl. Mat. i Mat. Fiz.
25 (1985), no. 8, 1246–1252, 1279 (Russian). MR 807353
(87b:65030)
 [Mys87]
I.
P. Mysovskikh, Cubature formulas that are exact for trigonometric
polynomials, Dokl. Akad. Nauk SSSR 296 (1987),
no. 1, 28–31 (Russian); English transl., Soviet Math. Dokl.
36 (1988), no. 2, 229–232. MR 914219
(89b:41038)
 [Mys88]
I.
P. Mysovskikh, Cubature formulas that are exact for trigonometric
polynomials, Metody Vychisl. 15 (1988), 7–19,
178 (Russian). MR
967440 (90a:65050)
 [Nos85]
M.
V. Noskov, Cubature formulas for the approximate integration of
periodic functions, Metody Vychisl. 14 (1985),
15–23, 185 (Russian). MR 1000505
(90f:65038)
 [Nos88a]
M.
V. Noskov, Cubature formulas for approximate integration of
functions of three variables, Zh. Vychisl. Mat. i Mat. Fiz.
28 (1988), no. 10, 1583–1586, 1600 (Russian);
English transl., U.S.S.R. Comput. Math. and Math. Phys.
28 (1988), no. 5, 200–202 (1990). MR 973214
(90j:65042)
 [Nos88b]
M. V. Noskov, Formulas for the approximate integration of periodic functions, Metody Vycisl. 15 (1988), 1922 (Russian). CMP 21:03
 [Nos91]
M. V. Noskov, On the construction of cubature formulae of higher trigonometric degree, Metody Vycisl. 16 (1991), 1623 (Russian).
 [NS96]
M.
V. Noskov and A.
R. Semënova, Cubature formulas of increased trigonometric
accuracy for periodic functions of four variables, Zh. Vychisl. Mat. i
Mat. Fiz. 36 (1996), no. 10, 5–11 (Russian,
with Russian summary); English transl., Comput. Math. Math. Phys.
36 (1996), no. 10, 1325–1330 (1997). MR 1417920
(97h:65029)
 [Sem96]
A. R. Semenova, Computing experiments for construction of cubature formulae of high trigonometric accuracy, Cubature Formulas and Their Applications (Russian) (Ufa) (M. D. Ramazanov, ed.), 1996, pp. 105115.
 [SJ94]
I.
H. Sloan and S.
Joe, Lattice methods for multiple integration, Oxford Science
Publications, The Clarendon Press, Oxford University Press, New York, 1994.
MR
1442955 (98a:65026)
 [BC93]
 M. Beckers and R. Cools, A relation between cubature formulae of trigonometric degree and lattice rules, International Series of Numerical Mathematics., Vol. 112, Numerical Integration IV (H. Brass and G. Hämmerlin, eds.), Birkhäuser Verlag, Basel, 1993, pp. 1324. MR 95b:65034
 [CNR99]
 R. Cools, E. Novak, and K. Ritter, Smolyak's construction of cubature formulas of arbitrary trigonometric degree, Computing 62, no. 2, (1999), 147162. MR 2000c:41041
 [CR97]
 R. Cools and A. Reztsov, Different quality indexes for lattice rules, J. Complexity 13 (1997), 235258. MR 98e:65011
 [CS96]
 R. Cools and I. H. Sloan, Minimal cubature formulae of trigonometric degree, Math. Comp. 65, no. 216, (1996), 15831600. MR 97a:65025
 [Fro77]
 K. K. Frolov, On the connection between quadrature formulas and sublattices of the lattice of integral vectors, Dokl. Akad. Nauk SSSR 232 (1977), 4043, (Russian) Soviet Math. Dokl. 18 (1977), 3741 (English). MR 55:272
 [GL87]
 P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, NorthHolland, Amsterdam, 1987. MR 88j:11034
 [KR95]
 B. V. Klyuchnikov and A. V. Reztsov, A relation between cubature formulas and densest lattice packings, East J. Approx. 1, no. 4, (1995), 557570. MR 97g:41045
 [LS97]
 J. N. Lyness and I. H. Sloan, Cubature rules of prescribed merit, SIAM J. Numer. Anal. 34, no. 2, (1997), 586602. MR 97m:65052
 [LS93]
 J. N. Lyness and T. Sørevik, Lattice rules by component scaling, Math. Comp. 61, no. 204, (1993), 799820. MR 94a:65011
 [Lyn88]
 J. N. Lyness, Some comments on quadrature rule construction criteria, International Series of Numerical Mathematics., Vol. 85, Numerical Integration III (G. Hämmerlin and H. Brass, eds.), Birkhäuser Verlag, Basel, 1988, pp. 117129. MR 91b:65028
 [Lyn89]
 J. N. Lyness, An introduction to lattice rules and their generator matrices, IMA J. Numer. Anal. 9 (1989), 405419. MR 91b:65029
 [Min67]
 H. Minkowski, Gesammelte Abhandlungen, Reprint (originally published in 2 volumes, Leipzig, 1911), Chelsea Publishing Company, 1967.
 [Mys85]
 I. P. Mysovskikh, Quadrature formulae of the highest trigonometric degree of accuracy, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), 12461252 (Russian). U.S.S.R. Comput. Maths. Math. Phys. 25 (1985), 180184 (English). MR 87b:65030
 [Mys87]
 I. P. Mysovskikh, Cubature formulas that are exact for trigonometric polynomials, Dokl. Akad. Nauk SSSR 296 (1987), 2831 (Russian). Soviet Math. Dokl. 36 (1988), 229232 (English). MR 89b:41038
 [Mys88]
 I. P. Mysovskikh, Cubature formulas that are exact for trigonometric polynomials, Metody Vycisl. 15 (1988), 719 (Russian). MR 90a:65050
 [Nos85]
 M. V. Noskov, Cubature formulae for the approximate integration of periodic functions, Metody Vycisl. 14 (1985), 1523 (Russian). MR 90f:65038
 [Nos88a]
 M. V. Noskov, Cubature formulae for the approximate integration of functions of three variables, Zh. Vychisl. Mat. Mat. Fiz. 28 (1988), 15831586 (Russian). U.S.S.R. Comput. Maths. Math. Phys. 28 (1988), 200202 (English). MR 90j:65042
 [Nos88b]
 M. V. Noskov, Formulas for the approximate integration of periodic functions, Metody Vycisl. 15 (1988), 1922 (Russian). CMP 21:03
 [Nos91]
 M. V. Noskov, On the construction of cubature formulae of higher trigonometric degree, Metody Vycisl. 16 (1991), 1623 (Russian).
 [NS96]
 M. V. Noskov and A. R. Semenova, Cubature formulae of high trigonometric accuracy for periodic functions of four variables, Comp. Math. Math. Phys. 36, no. 10, (1996), 13251330. MR 97h:65029
 [Sem96]
 A. R. Semenova, Computing experiments for construction of cubature formulae of high trigonometric accuracy, Cubature Formulas and Their Applications (Russian) (Ufa) (M. D. Ramazanov, ed.), 1996, pp. 105115.
 [SJ94]
 I. H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford University Press, 1994. MR 98a:65026
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
41A55,
41A63,
42A10,
65D32
Retrieve articles in all journals
with MSC (2000):
41A55,
41A63,
42A10,
65D32
Additional Information
Ronald Cools
Affiliation:
Department of Computer Science, K. U. Leuven, Celestijnenlaan 200A, B3001 Heverlee, Belgium
Email:
Ronald.Cools@cs.kuleuven.ac.be
James N. Lyness
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 and School of Mathematics, University of New South Wales, Sydney 2052 Australia
Email:
lyness@mcs.anl.gov
DOI:
http://dx.doi.org/10.1090/S0025571801013266
PII:
S 00255718(01)013266
Received by editor(s):
November 29, 1999
Published electronically:
May 14, 2001
Additional Notes:
The second author was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S.\ Dept.\ of Energy, under Contract W31109Eng38.
Article copyright:
© Copyright 2001
University of Chicago and Katholieke Universiteit Leuven
