Three- and four-dimensional -optimal lattice rules of moderate trigonometric degree

Authors:
Ronald Cools and James N. Lyness

Journal:
Math. Comp. **70** (2001), 1549-1567

MSC (2000):
Primary 41A55, 41A63, 42A10; Secondary 65D32

DOI:
https://doi.org/10.1090/S0025-5718-01-01326-6

Published electronically:
May 14, 2001

MathSciNet review:
1836918

Full-text PDF

Abstract | References | Similar Articles | Additional Information

A systematic search for optimal lattice rules of specified trigonometric degree over the hypercube has been undertaken. The search is restricted to a population of lattice rules . This includes those where the dual lattice may be generated by points for each of which . The underlying theory, which suggests that such a restriction might be helpful, is presented. The general character of the search is described, and, for , and , , a list of -optimal rules is given. It is not known whether these are also optimal rules in the general sense; this matter is discussed.

**[BC93]**M. Beckers and R. Cools,*A relation between cubature formulae of trigonometric degree and lattice rules*, International Series of Numerical Mathematics., Vol. 112, Numerical Integration IV (H. Brass and G. Hämmerlin, eds.), Birkhäuser Verlag, Basel, 1993, pp. 13-24. MR**95b:65034****[CNR99]**R. Cools, E. Novak, and K. Ritter,*Smolyak's construction of cubature formulas of arbitrary trigonometric degree*, Computing**62**, no. 2, (1999), 147-162. MR**2000c:41041****[CR97]**R. Cools and A. Reztsov,*Different quality indexes for lattice rules*, J. Complexity**13**(1997), 235-258. MR**98e:65011****[CS96]**R. Cools and I. H. Sloan,*Minimal cubature formulae of trigonometric degree*, Math. Comp.**65**, no. 216, (1996), 1583-1600. MR**97a:65025****[Fro77]**K. K. Frolov,*On the connection between quadrature formulas and sublattices of the lattice of integral vectors*, Dokl. Akad. Nauk SSSR**232**(1977), 40-43, (Russian) Soviet Math. Dokl. 18 (1977), 37-41 (English). MR**55:272****[GL87]**P. M. Gruber and C. G. Lekkerkerker,*Geometry of numbers*, North-Holland, Amsterdam, 1987. MR**88j:11034****[KR95]**B. V. Klyuchnikov and A. V. Reztsov,*A relation between cubature formulas and densest lattice packings*, East J. Approx.**1**, no. 4, (1995), 557-570. MR**97g:41045****[LS97]**J. N. Lyness and I. H. Sloan,*Cubature rules of prescribed merit*, SIAM J. Numer. Anal.**34**, no. 2, (1997), 586-602. MR**97m:65052****[LS93]**J. N. Lyness and T. Sørevik,*Lattice rules by component scaling*, Math. Comp.**61**, no. 204, (1993), 799-820. MR**94a:65011****[Lyn88]**J. N. Lyness,*Some comments on quadrature rule construction criteria*, International Series of Numerical Mathematics., Vol. 85, Numerical Integration III (G. Hämmerlin and H. Brass, eds.), Birkhäuser Verlag, Basel, 1988, pp. 117-129. MR**91b:65028****[Lyn89]**J. N. Lyness,*An introduction to lattice rules and their generator matrices*, IMA J. Numer. Anal.**9**(1989), 405-419. MR**91b:65029****[Min67]**H. Minkowski,*Gesammelte Abhandlungen*, Reprint (originally published in 2 volumes, Leipzig, 1911), Chelsea Publishing Company, 1967.**[Mys85]**I. P. Mysovskikh,*Quadrature formulae of the highest trigonometric degree of accuracy*, Zh. Vychisl. Mat. i Mat. Fiz.**25**(1985), 1246-1252 (Russian).*U.S.S.R. Comput. Maths. Math. Phys.*25 (1985), 180-184 (English). MR**87b:65030****[Mys87]**I. P. Mysovskikh,*Cubature formulas that are exact for trigonometric polynomials*, Dokl. Akad. Nauk SSSR**296**(1987), 28-31 (Russian).*Soviet Math. Dokl.*36 (1988), 229-232 (English). MR**89b:41038****[Mys88]**I. P. Mysovskikh,*Cubature formulas that are exact for trigonometric polynomials*, Metody Vycisl.**15**(1988), 7-19 (Russian). MR**90a:65050****[Nos85]**M. V. Noskov,*Cubature formulae for the approximate integration of periodic functions*, Metody Vycisl.**14**(1985), 15-23 (Russian). MR**90f:65038****[Nos88a]**M. V. Noskov,*Cubature formulae for the approximate integration of functions of three variables*, Zh. Vychisl. Mat. Mat. Fiz.**28**(1988), 1583-1586 (Russian).*U.S.S.R. Comput. Maths. Math. Phys.*28 (1988), 200-202 (English). MR**90j:65042****[Nos88b]**M. V. Noskov,*Formulas for the approximate integration of periodic functions*, Metody Vycisl.**15**(1988), 19-22 (Russian). CMP**21:03****[Nos91]**M. V. Noskov,*On the construction of cubature formulae of higher trigonometric degree*, Metody Vycisl.**16**(1991), 16-23 (Russian).**[NS96]**M. V. Noskov and A. R. Semenova,*Cubature formulae of high trigonometric accuracy for periodic functions of four variables*, Comp. Math. Math. Phys.**36**, no. 10, (1996), 1325-1330. MR**97h:65029****[Sem96]**A. R. Semenova,*Computing experiments for construction of cubature formulae of high trigonometric accuracy*, Cubature Formulas and Their Applications (Russian) (Ufa) (M. D. Ramazanov, ed.), 1996, pp. 105-115.**[SJ94]**I. H. Sloan and S. Joe,*Lattice methods for multiple integration*, Oxford University Press, 1994. MR**98a:65026**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
41A55,
41A63,
42A10,
65D32

Retrieve articles in all journals with MSC (2000): 41A55, 41A63, 42A10, 65D32

Additional Information

**Ronald Cools**

Affiliation:
Department of Computer Science, K. U. Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Email:
Ronald.Cools@cs.kuleuven.ac.be

**James N. Lyness**

Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 and School of Mathematics, University of New South Wales, Sydney 2052 Australia

Email:
lyness@mcs.anl.gov

DOI:
https://doi.org/10.1090/S0025-5718-01-01326-6

Received by editor(s):
November 29, 1999

Published electronically:
May 14, 2001

Additional Notes:
The second author was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Dept. of Energy, under Contract W-31-109-Eng-38.

Article copyright:
© Copyright 2001
University of Chicago and Katholieke Universiteit Leuven