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UPPER BOUNDS FOR THE PRIME DIVISORS
OF WENDT’S DETERMINANT

ANASTASIOS SIMALARIDES

Abstract. Let c ≥ 2 be an even integer, (3, c) = 1. The resultant Wc of the
polynomials tc − 1 and (1 + t)c − 1 is known as Wendt’s determinant of order
c. We prove that among the prime divisors q of Wc only those which divide
2c−1 or Lc/2 can be larger than θc/4, where θ = 2.2487338 and Ln is the nth
Lucas number, except when c = 20 and q = 61. Using this estimate we derive
criteria for the nonsolvability of Fermat’s congruence.

1. Introduction

Let c ≥ 2 be an even integer. Given two polynomials f(t) and g(t) denote by
R(f(t), g(t)) their resultant. The integer

Wc = R(tc − 1, (1 + t)c − 1)

is known as Wendt’s determinant. The prime divisors of Wc are of importance
because of the following result of Wendt [16].

Theorem 1. Let p, q be odd primes such that q = 1+cp, (3, c) = 1. Then, Fermat’s
congruence

xp + yp + zp ≡ 0 (mod q)(1)

has a nontrivial solution (that is, a solution (x, y, z) such that xyz 6≡ 0 (mod q)) if
and only if q divides Wc.

Although Fermat’s Problem has been solved completely, some questions concern-
ing congruence (1) (or, equivalently, the number Wc) remain still unanswered (cf.
Section 5).

Since Wc = 0 if and only if (3, c) > 1, we shall assume through the paper that
(3, c) = 1. The quantity |Wc| grows rapidly with c; Boyd [1] proved that

10−1/3λc
2
< |Wc| < 101/3λc

2
,

where logλ = 2
π

∫ π/3
0

log(2 cos θ)dθ = 0.323 . . . . In the Table 1 below we list the
first few values of |Wc|. Several authors carried out the complete factorization of
Wc for c ≤ c0: Frame [8] for c0 = 50; Fee and Granville [6] for c0 = 200; Ford and
Jha [7] for c0 = 500.
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Table 1. The values of |Wc| for c ≤ 20

c |Wc| c |Wc|
2 3 14 224 · 3 · 296 · 433 · 1273

4 3 · 53 16 37 · 53 · 76 · 1715 · 2573

8 37 · 53 · 173 20 3 · 524 · 119 · 313 · 419 · 616

10 3 · 119 · 313

By the well-known factorizations (cf. [8])

Wc =
c∏

a=1

c∏
b=1

(1 + ζa + ζb)

=
c∏

a=1

c∏
b=1

(1− ζa − ζb), ζ = e2πi/c,

(2)

of Wc, it follows immediately that the integer 2c−1 divides Wc. It follows also in an
analogous way (cf. Section 2) that Lc/2 divides Wc (Ln is the nth Lucas number),
in case c ≡ 2 (mod 4).

Such nice factors of Wc are called principal factors. Further information on the
principal factors of Wc can be found in E. Lehmer [11], Frame [8] and Ribenboim
[12]; for a recent result see Helou [9]. The factorization of the principal factors

2c − 1, Lc/2,(3)

is of special importance, because the greatest prime divisor of Wc divides often one
of the numbers (3). The extensive tables by Brillhart et al. [2], contain all the
known factorizations of the numbers 2c − 1 for c ≤ 2400; other tables by Brillhart
et al. [3] contain all the known factorizations of the Lucas numbers Ln for n ≤ 500.
Unfortunately, no complete factorization of Wc is known that involves only simple
principal factors.

Upper bounds for the prime divisors of Wc are obtained in the following way.
Let q be a prime divisor of Wc, which does not divide c. It follows by (2) that a
prime ideal divisor of q in Q(ζ) divides a trinomial cyclotomic integer 1 + ζa + ζb.
In consequence, q divides both the norm

N = N(a, b) = NQ(ζ)/Q(1 + ζa + ζb)

of 1 + ζa + ζb and the resultant

R = R(a, b) = R(1 + ta + tb, tc/2 + 1)

of the polynomials 1 + ta + tb and tc/2 + 1; in consequence, it suffices to estimate
one of the numbers |N | and |R|. Bounds which arise from the estimation of |N |
have their origin in Vandiver [15], who first noticed and used the simplest possible
estimate |N | ≤ 3φ(c) of this type (φ is Euler’s function). Improved bounds of this
type were proved and used by Denes [5], Simalarides [13], and, Fee and Granville
[6]. Bounds that arise from the estimation of |R| have their origin in Krasner [10],
who proved that q ≤ 3c/4 for every prime divisor q of Wc such that 2c 6≡ 1 (mod q)
and q = 1 + cp, where p is a prime. The author [14] improved upon Krasner’s
result by proving that q ≤ 3 + (2.618 . . . )c/4, under the same conditions. In the
same paper, it was also proved that q ≤ 2.459c/4 under the additional condition
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that q does not divide the numbers 1 + (−1)c/2±Lc/2. The results in [10] and [14]
were not formulated explicitly as results concerning the resultant Wc, but rather,
as results concerning the first case of Fermat’s Last Theorem.

We generalize and improve all these previous results as follows.

Theorem 2. Let c ≥ 2 be an even integer such that (3, c) = 1. If a prime divisor
q of Wc satisfies the inequality

q > θc/4, where θ = 2.2487338,(4)

then at least one of the following is true: (i) c = 20 and q = 61; (ii) q is a divisor
of 2c − 1; (iii) c ≡ 2 (mod 4) and q is a divisor of Lc/2.

The proof of Theorem 2 will be given in Section 3.
In case c ≡ 0 (mod 4) the number 2c − 1 admits the obvious factorization

2c − 1 = (2c/4 − 1)(2c/4 + 1)(2c/2 + 1),

while in case c 6≡ 0 (mod 8), it can be factored further (Aurifeuillian factorization)
as follows:

2c − 1 = (2c/4 − 1)(2c/4 + 1)(2c/4 − 2(c+4)/8 + 1)(2c/4 + 2(c+4)/8 + 1).

In view of these factorizations, Theorem 2 can be written in the following sharper
form.

Theorem 3. Let c ≥ 2 be an even integer such that (3, c) = 1. Then, among the
prime divisors q of Wc, only those which divide either

2c − 1 or Lc/2, in case c ≡ 2 (mod 4),

or

2c/2 + 1, in case c ≡ 0 (mod 8),

can be larger than θc/4, where θ = 2.2487338, except when

(c, q) ∈ {(4, 3), (4, 5), (20, 61)}.

2. Preliminaries concerning Fibonacci and Lucas numbers

The formulae

L2n = L2
n − 2(−1)n, 4 + L2

2n−1 = 5F 2
2n−1, n ≥ 1,(5)

are immediate consequences of the standard expresssions

Ln = ωn1 + ωn2 , Fn =
ωn2 − ωn1
ω2 − ω1

, n ≥ 1

for the nth Lucas and Fibonacci numbers, respectively, where ω1 = (1 −
√

5)/2,
ω2 = (1 +

√
5)/2, are the roots of the polynomial t2 − t− 1. Define

uc = R(t2 + t− 1, tc − 1).

The following lemma shows that uc is a principal factor of Wc.
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Lemma 1. Let c ≥ 2 be an even integer such that (3, c) = 1. Then the following
hold true:
(i) The integer uc is a divisor of Wc.
(ii) We have

uc = 2− Lc = 2 + 2(−1)c/2 − L2
c/2

=


(
2− L c

4

) (
2 + L c

4

)
L2
c
4

if c ≡ 0 (mod 8),
−5F 2

c
4
L2
c
4

if c ≡ 4 (mod 8),
−L2

c
2

if c ≡ ±2 (mod 8).

(iii) If a prime divisor q 6= 5 of uc is larger than θc/4, then c ≡ 2 (mod 4) and q is
a divisor of Lc/2.

Proof. (i) Immediate in view of (2) and the fact that

uc =
c∏

a=1

(ζ2a + ζa − 1).

(ii) We have

uc = (ωc1 − 1)(ωc2 − 1) = (ω1ω2)c − (ωc1 + ωc2) + 1
= 2− Lc.

Applying formulae (5) we obtain the rest of the result sought.
(iii) Immediate in view of (ii) and of the obvious bounds

Ln ≤ 1 + ωn2 = 1 + (1.618 . . . )n, Fn ≤
ωn2 + 1√

5
=

(1.618 . . . )n + 1√
5

,

where n ≥ 1.

3. Proof of Theorem 2

First of all, Theorem 2 is true for c ≤ 20, so we can assume that c ≥ 22. Assume
that there is a prime divisor q of Wc which satisfies the inequality (4). Assume also
that q is neither a divisor of 2c−1, nor a divisor of Lc/2 in case c ≡ 2 (mod 4). We
shall prove that this assumption leads to a contradiction. Hypothesis (4) implies
that q > c, so q does not divide c; it follows that

1 + ζa + ζb ≡ 0 (mod q),(6)

where q is a prime ideal divisor of q in Q(ζ), and a, b are two integers such that

a 6≡ 0, b 6≡ 0, a 6≡ b (mod c)

(the last three relations are immediate consequences of the hypothesis 2c 6≡ 1
(mod q)).

Since ζc/2 + 1 = 0, the resultant R(a, b) of the polynomials 1 + ta + tb, tc/2 + 1
satisfies the congruence

R(a, b) ≡ 0 (mod q).(7)

We can assume that q ≡ 1 (mod c); otherwise would have R(a, b) ≡ 0 (mod q2),
and in consequence q < 3c/8, which would contradict hypothesis (4).
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The integer R(a, b) admits the following representation:

R(a, b) =
c/2∏
i=1

[
1 + ζ(2i−1)a + ζ(2i−1)b

]
=

c1∏
i=1

[
3 + 2 cos

2πa
c

(2i− 1)

+2 cos
2πb
c

(2i− 1) + 2 cos
2π(a− b)

c
(2i− 1)

]
d,

where

c1 =


c
4 if c ≡ 0 (mod 4),

c
4 −

1
2 if c 6≡ 0 (mod 4),

and

d =


1 if c ≡ 0 (mod 4),

1 + (−1)a + (−1)b if c 6≡ 0 (mod 4).

We have R(a, b) 6= 0 because of the relation (3, c) = 1. Introducing the abbreviation

Ai = cos
2πa
c

(2i− 1) + cos
2πb
c

(2i− 1) + cos
2π(a− b)

c
(2i− 1),

we obtain

log |R(a, b)| =
c1∑
i=1

log (3 + 2Ai) + log |d|,

where evidently −1.5 < Ai ≤ 3. We have

log (3 + 2z) <
4∑
j=0

αjz
j , for − 1.5 < z ≤ 3,

where α0 = 1.166985006, α1 = 0.76146, α2 = −0.295509605, α3 = 0.0523446,
α4 = 0.0014453. This implies that

log |R(a, b)| <
c1∑
i=1

4∑
j=0

αjA
j
i + log |d| =

4∑
j=0

αj

c1∑
i=1

Aji + log |d|.(8)

Given two variables x, y, consider the function

[cosx+ cos y + cos (x− y)]n, n ≥ 0,

and its Fourier expansion

[cosx+ cos y + cos (x− y)]n =
∞∑
r=0

∞∑
s=−∞

c(n)
r,s cos (rx + sy);

the set

An =
{

(r, s) ∈ Z× Z; c(n)
r,s 6= 0

}
is finite. We have trivially A0 = {(0, 0)} and c

(0)
0,0 = 1. It is easily seen that

An ⊂ An+1, for n = 1, 2, 3, . . . .
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We can write

[cosx+ cos y + cos (x − y)]n =
∑

(r,s)∈An

c(n)
r,s cos (rx + sy),

or more simply

[cosx+ cos y + cos (x− y)]n =
∑
r,s

c(n)
r,s cos (rx + sy).

Estimate (8) then takes the form

log |R(a, b)| <
4∑
j=0

αj
∑
r,s

c(j)r,s

c1∑
i=1

cos
2π(ra+ sb)

c
(2i− 1) + log |d|.(9)

We also have

c1∑
i=1

cos
2π(ra+ sb)

c
(2i− 1) =



c1(−1)2(ra+sb)/c if ra+ sb ≡ 0 (mod c
2 );

0 if ra+ sb 6≡ 0 (mod c
2 )

and c ≡ 0 (mod 4);
− 1

2 cos (ra+ sb)π if ra+ sb 6≡ 0 (mod c
2 )

and c 6≡ 0 (mod 4).

(10)

The next lemma guarantees that ra + sb 6≡ 0 (mod c
2 ) for all (r, s) ∈ A4 with at

most two exceptions. We denote by (a, b) any solution of the congruence

1 + ζA + ζB ≡ 0 (mod q), A 6≡ 0, B 6≡ 0, A 6≡ B (mod c);(11)

the numbers a, b are determined modc. Relation (6) says that the set of the solu-
tions to (11) is nonempty by hypothesis.

Lemma 2. Let A = {(2,−4), (4,−2), (2, 2)}. Then the following hold true:
(I) The pairs (b, a), (−a, b− a) are also solutions of (11).
(II) The congruence

ra+ sb ≡ 0 (mod
c

2
)(12)

is impossible for (r, s) ∈ A4 −A− {(0, 0)}.
(III) If c 6≡ 0 (mod 4), then congruence (12) is impossible for (r, s) ∈ A4−{(0, 0)},
while if c ≡ 0 (mod 4), then congruence (12) can be satisfied by at most one (r, s) ∈
A and in this case 2(ra+ sb)/c is odd.

Proof. The first assertion of the lemma is obvious.

(II) We have A1 = {(1,−1), (1, 0), (0, 1)} and

A2 = A1 ∪ {(0, 0), (1,−2), (2,−2), (2,−1), (2, 0), (1, 1), (0, 2)},
A3 = A2 ∪ {(1,−3), (2,−3), (3,−3), (3,−2), (3,−1), (3, 0), (2, 1), (1, 2), (0, 3)},
A4 = A3 ∪ {(1,−4), (2,−4), (3,−4), (4,−4), (4,−3),

(4,−2), (4,−1), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}.
Obviously, the set A4 −A− {(0, 0)} consists of 27 elements.

Consider the transformations τ0, τ1, τ2 defined by

τ0(a, b) = (a, b), τ1(a, b) = (b, a), τ2(a, b) = (−a, b− a).
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All these transformations are of the form

τi(a, b) =
(
a

(i)
11 a+ a

(i)
12 b, a

(i)
21a+ a

(i)
22 b
)
, i = 0, 1, 2,(13)

or in matrix notation

τi(a, b)T =

(
a

(i)
11 a

(i)
12

a
(i)
21 a

(i)
22

)(
a
b

)
, akl ∈ Z.

The image τi(a, b) is also a solution of (11) for i = 0, 1, 2 because of the part (I) of
the lemma. For this reason, if

r1a+ s1a 6≡ 0 (mod
c

2
),(14)

for some (r1, s1) ∈ A4 −A− {(0, 0)} and for every solution (a, b) of (11), then also

r1

(
a

(i)
11 a+ a

(i)
12 b
)

+ s1

(
a

(i)
21a+ a

(i)
22 b
)
6≡ 0 (mod

c

2
)(15)

for every i = 0, 1, 2, 3. Since the left member of (15) is equal to(
r1a

(i)
11 + s1a

(i)
21

)
a+

(
r1a

(i)
12 + s1a

(i)
22

)
b,

it follows that if (14) is true for some (r1, s1) ∈ A4 − A − {(0, 0} and for every
solution (a, b), then the relation ra + sb 6≡ 0 (mod c/2) is also true for the pair
(r, s), where (

r
s

)
=

(
a

(i)
11 a

(i)
21

a
(i)
12 a

(i)
22

)(
r1

s1

)
, i = 0, 1, 2.(16)

A subset B of A4 − A − {(0, 0)} is called fundamental, if, for every pair (r, s) ∈
A4 −A− {(0, 0)}, the equality(

r
s

)
= ±T

(
r1
s1

)
holds true for some (r1, s1) ∈ B and for some transformation T composed of the
transformations (16).

The final conclusion of the above discussion is the following: To prove part (II) of
Lemma 2, it suffices to prove that the congruence (12) is impossible for all (r, s) ∈ B,
where B is a fundamental subset of A4 −A− {(0, 0)}. A simple calculation shows
that a fundamental subset of A4 −A− {(0, 0)} is the following

B = {(1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (1,−3), (1,−4)}.

We distinguish two cases (A), (B).

(A) (r, s) ∈ {(1, 0), (2, 0), (3, 0), (4, 0)}; we have to prove that

a 6≡ 0, 2a 6≡ 0, 22a 6≡ 0, 3a 6≡ 0 (mod
c

2
).

We prove the first three relations by induction on the exponents of the powers
1, 2, 22. The first relation is true by hypothesis. Assuming that 2ja 6≡ 0 (mod c/2),
let us prove that 2j+1a 6≡ 0 (mod c/2). Indeed, the contrary hypothesis 2j+1a ≡ 0
(mod c/2) implies that 2j+1a = k(c/2), where k is an integer. The number k is
odd, because if k were even, then this fact would vitiate the induction hypothesis;
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in consequence, c is divisible by 4 and so a = k(c/2j+2). Then ζa = ξ, where ξ is a
primitive 2j+2-th root of unity, and congruence (6) becomes

1 + ξ ≡ −ζb (mod q).(17)

Congruence (17) implies then (1 + ξ)c ≡ 1 (mod q) and taking norms we conclude
that 2c ≡ 1 (mod q), which is impossible by hypothesis.

It remains to prove that 3a 6≡ 0 (mod c/2); indeed, if were 3a ≡ 0 (mod c/2)
this would imply (since (3, c) = 1) that a ≡ 0 (mod c/2), which is impossible by
hypothesis.

(B) (r, s) ∈ {(1, 1), (1,−3), (1,−4)}; assume that the congruence (12) holds true
for such a pair (r, s). We shall prove that this leads to a contradiction. We have
by hypothesis

ζra ≡ ±ζ−sb (mod q), 1 + ζa + ζb ≡ 0 (mod q).(18)

It follows that at least one of the polynomials

f±r,s(t) =

 (1 + t)r ± t−s if s < 0,

ts(1 + t)r ± 1 if s > 0,
(19)

has a common root mod q with the polynomial tc − 1 = (tc/2 − 1)(tc/2 + 1). This
implies that at least one of the congruences

R
(
f±r,s(t), t

c/2 + (−1)n
)
≡ 0 (mod q)(20)

holds true for every n ∈ {1, 2}. If d±r,s are the degrees of the polynomials (19) and
ρ±1 , ρ

±
2 , . . . , their roots, then

R
(
f±r,s(t), t

c/2 + (−1)n
)

=
d±r,s∏
i=1

[
ρ
c/2
i + (−1)n

]
.

We have to distinguish between two cases (a) and (b):
(a) (r, s) = (1, 1); we have

f±1,1(t) = t2 + t± 1,

0 <
∣∣∣R(t2 + t+ 1, tc/2 + (−1)n

)∣∣∣ ≤ 4,(21)

R
(
t2 + t− 1, tc/2 + (−1)n

)
=

[
(−ω1)

c
2 + (−1)n

]
·
[
(−ω2)

c
2 + (−1)n

]
= 1 + (−1)c/2 + (−1)n+ c

2Lc/2 6= 0.(22)

Relation (21) contradicts hypothesis (4). Each of the numbers (22) divides by part
(ii) of Lemma 1 the number uc for n = 1, 2. Congruence (20) leads then, in view
of part (iii) of Lemma 1, to a contradiction.
(b) (r, s) ∈ {(1,−3), (1,−4)}; we have

f1,−3(t) = ±t3 + t+ 1 and f1,−4(t) = ±t4 + t+ 1.

For c ≥ 22, a simple calculation shows that

0 <
∣∣∣R (f±r,s(t), tc/2 + (−1)n

)∣∣∣ < θc/4

for (r, s) ∈ {(1,−3), (1,−4)}, which contradicts, in view of (20), hypothesis (4).
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(III) If two of the congruences

2a− 4b ≡ 0, 4a− 2b ≡ 0, 2a+ 2b ≡ 0 (mod
c

2
),(23)

were true, then for these two congruences, say for the first and for the second, we
would have

0 ≡ (2a− 4b) + (4a− 2b) ≡ 6a− 6b (mod
c

2
)⇒ 6a− 6b = k

c

2
⇒ 2a− 2b = k1

c

2
(because c 6≡ 0 (mod 3))

⇒ 2a− 2b ≡ 0 (mod
c

2
),

which is absurd, since (2,−2) ∈ A4 − A − {(0, 0)}. If one of the congruences (23)
is true, this means that

2a− 4b ≡ 0 or 4a− 2b ≡ 0 or 2a+ 2b ≡ 0 (mod
c

2
),

or equivalently

2a− 4b = k1
c

2
or 4a− 2b = k2

c

2
or 2a+ 2b = k3

c

2
.(24)

The integers k1, k2, k3 cannot be even; otherwise this would imply that

a− 2b ≡ 0 or 2a− b ≡ 0 or a+ b ≡ 0 (mod
c

2
),

which is absurd, because (1,−2), (2,−1), (1, 1) ∈ A4 −A − {(0, 0)}. In case c 6≡ 0
(mod 4) the equalities (24) are all impossible because the right members are odd
numbers.

We then turn to the proof of theorem. We distinguish two cases (A) and (B).
(A) c ≡ 0 (mod 4); then c1 = c

4 and d = 1. In case the congruence ra + sb ≡ 0
(mod c

2 ) holds true for one (and only one) (r, s) ∈ A, it follows by Lemma 2 and
relations (9), (10) that

log |R(a, b)| <
[
α0c

(0)
0,0 + α1c

(1)
0,0 + α2c

(2)
0,0 + α3c

(3)
0,0 + α4(c(4)

0,0 − c(4)
r,s)
] c

4
.

Since

c
(0)
0,0 = 1, c(1)

0,0 = 0, c(2)
0,0 =

3
2
, c

(3)
0,0 =

3
2
, c

(4)
0,0 =

45
8
,

and

c(4)
r,s =

3
4

for (r, s) ∈ A,

we obtain the estimate

log |R(a, b)| < (0.809283336 . . .)
c

4
<
c

4
log θ.(25)

In case the congruence ra+ sb ≡ 0 (mod c
2 ) is impossible for all (r, s) ∈ A, Lemma

2, together with the relations (9), (10), imply the estimate

log |R(a, b)| <

 4∑
j=0

αjc
(j)
0,0

 c
4

=
c

4
log θ.(26)

Both estimates (25) and (26) contradict, by (7), hypothesis (4).
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(B) c 6≡ 0 (mod 4); then c1 = c
4 −

1
2 , d = 1 + (−1)a + (−1)b, and it follows by

Lemma 2 and relations (9), (10) that

log |R(a, b)| <

4∑
j=0

αj

c14 c(j)0,0 −
1
2

∑
r,s

(r,s) 6=(0,0)

c(j)r,s cos (ra+ sb)π

+ log |d|

=
4∑
j=0

αj

[
c

4
c
(j)
0,0 −

1
2

∑
r,s

c(j)r,s cos (ra + sb)π

]
+ log |d|

=

 4∑
j=0

αjc
(j)
0,0

 c
4
− 1

2

4∑
j=0

αj
[
(−1)a + (−1)b + (−1)a−b

]j
+ log |d|.

Hence

log |R(a, b)| <


c

4
log θ + log |d| − 0.01889 if a, b are both even,

c

4
log θ − 0.4103 otherwise,

which by (7) contradicts hypothesis (4), since q cannot divide the integer d.

4. The large prime divisors of Wc

Let c ≥ 2 be an integer such that (3, c) = 1. A prime divisor q of Wc is called
large if q > θc/4. Denote by Pc the set of large prime divisors of Wc; denote also by
Pc, Qc, Uc (or, for simplicity, by P,Q,U) the largest prime divisor of the numbers
2c/2 − 1, 2c/2 + 1, Lc/2, respectively. The set Pc is empty in case c ≡ 4 (mod 8),
except when c = 20. We can easily determine the set Pc using Theorem 3 in
combination with the tables in [2] and [3]. Thus, in Table 2 below we list the large
prime divisors of Wc for all c ≤ 662, such that c 6≡ 0 (mod 3) and c 6≡ 4 (mod 8)
(the case c = 20 is also included). We did not try to extend Table 2 beyond the
value c = 662, because for c > 662, in the tables in [2] and [3] appear incomplete
factorizations of the numbers (3), involving composite factors whose prime factors
are unknown. We found that all the numbers in Table 2 are congruent to 1 (mod c).
We also found that for c ≤ 662, and q ∈ Pc, the number (q−1)/c is always composite
except when

(c, q) ∈ {(10, 31), (20, 61), (22, 683)}.

The verification of the last assertion has been carried out without much difficulty
because in almost all cases, the numbers (q−1)/c were found to have a small prime
divisor. The only difficulties arose from the numbers P482, Q362, Q454. Indeed we
found that the least prime divisor of the numbers (P482−1)/482 and (Q362−1)/362
is 21221 and 412987, respectively, while the converse of Fermat’s Theorem with base
2 showed that the number

(Q454 − 1)/454 = 15 4145 7503 4860 2301 1302 1485 7398 0441 2137 3127

is composite (with unknown factors).
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Table 2. The large prime divisors of Wc for c ≤ 662

c Pc c Pc c Pc c Pc
2 Q U 166 P 334 P Q 502 Q

8 Q 170 P Q 338 P 506 ∅
10 P Q U 176 ∅ 344 ∅ 512 Q

14 P Q U 178 P Q U 346 ∅ 514 ∅
16 Q 182 ∅ 350 ∅ 518 P

20 61 184 Q 352 Q 520 ∅
22 P Q U 190 Q 358 P Q 526 Q

26 P Q U 194 P Q 362 P Q 530 ∅
32 Q 200 ∅ 368 ∅ 536 Q

34 P Q U 202 Q 370 Q 538 P Q

38 P Q U 206 P Q 374 P Q 542 P

40 Q 208 Q 376 ∅ 544 ∅
46 P Q 214 P Q 382 Q 550 Q

50 ∅ 218 P Q 386 ∅ 554 Q

56 Q 224 ∅ 392 ∅ 560 ∅
58 Q 226 U 394 P 562 P Q

62 P Q U 230 ∅ 398 P Q 566 P Q

64 Q 232 Q 400 ∅ 568 Q

70 ∅ 238 ∅ 406 P 574 P

74 P Q U 242 P Q U 410 Q 578 P

80 Q 248 ∅ 416 ∅ 584 Q

82 P Q U 250 ∅ 418 ∅ 586 P U

86 Q 254 P Q 422 P 590 Q

88 Q 256 ∅ 424 ∅ 592 Q

94 Q U 262 P Q 430 Q 598 Q

98 P Q U 266 P Q 434 Q 602 Q

104 ∅ 272 ∅ 440 ∅ 608 ∅
106 Q U 274 ∅ 442 P Q 610 ∅
110 ∅ 278 P Q 446 Q U 614 P U

112 Q 280 Q 448 ∅ 616 Q

118 P 286 ∅ 454 P Q 622 P Q U

122 P Q U 290 P Q 458 Q U 626 Q U

128 Q 296 Q 464 Q 632 Q

130 P 298 Q 466 P Q 634 Q

134 P Q 302 Q 470 ∅ 638 P

136 Q 304 ∅ 472 Q 640 ∅
142 Q U 310 ∅ 478 P Q 646 P

146 P Q 314 ∅ 482 P Q 650 P

152 Q 320 Q 488 ∅ 656 ∅
154 P 322 Q 490 P 658 P Q

158 Q U 326 ∅ 494 Q 662 P

160 ∅ 328 Q 496 Q

5. Applications to Fermat’s congruence

Let p, q be odd primes. It is easy to prove that Fermat’s congruence (1) has a
nontrivial solution if q 6≡ 1 (mod p) or (3, c) > 1. However, the case q ≡ 1 (mod p),
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(3, c) = 1 involves many difficult and still unsolved problems. Combining together
Theorems 1 and 3 we obtain the following main result.

Theorem 4. Let p, q be odd primes such that (p, q) 6= (3, 61). Then Fermat’s
congruence

xp + yp + zp ≡ 0 (mod q)(27)

has only trivial solutions (that is, solutions (x, y, z) such that xyz ≡ 0 (mod q))
provided that:
(i) q = 1 + cp and (3, c) = 1;
(ii) 2c 6≡ 1 (mod q), or c ≡ 0 (mod 4);
(iii) Lc/2 6≡ 0 (mod q), or c ≡ 0 (mod 4);
(iv) q > θc/4.

The stronger condition c ≡ 0 (mod 4) in (ii) instead of c ≡ 0 (mod 8), is due
to the fact that the number 2c/2 + 1 does not have prime divisors of the form
q ≡ 1 (mod 8); this has been proved in [14, p. 170]. Theorem 4 improves upon the
previous results of Vandiver [15], Krasner [10] and the author [14].

The numerical evidence indicates that the conditions

2c 6≡ 1 (mod q) and Lc/2 6≡ 0 (mod q)

are almost always superfluous; more precisely:

Proposition 1. Let p, q be odd primes. Then, congruence (27) has only trivial
solutions for every prime exponent

p ≤ θ166 − 1
664

= (3.9769287 . . . )1055,

provided that q = 1 + cp, (3, c) = 1, q > θc/4 and that

(p, q) 6= (3, 31), (3, 61), (31, 683).

Proof. Assume that the pair (p, q) contradicts the truth of the proposition. Then,
necessarily, q ∈ Pc. By the results in Section 4 (last paragraph) it follows that
c ≥ 664. In consequence

p >
θc/4 − 1

c
≥ θ166 − 1

664
,

which is impossible by hypothesis.

Proposition 1 leads naturally to the following conjecture.

Conjecture 1. Let p, q be odd primes. Then, congruence (27) has only triv-
ial solutions provided that q = 1 + cp, (3, c) = 1, q > θc/4 and that (p, q) 6=
(3, 31), (3, 61), (31, 683).

It is important to note that inequality q > θc/4 is equivalent to

q <
4

log θ
p log p+

4
log θ

p log g log p

= (4.936 . . . )p log p+ (4.936 . . . )p log log p

(in fact, the last inequality is a bit weaker). According to a classical result of
Dickson, congruence (27) has nontrivial solutions if

q > (p− 1)2(p− 2)2 + 6p− 2.
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Chowla [4] conjectured that the stronger inequality q > p2 holds true for sufficiently
large p.
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[5] P. Dénes, An extension of Legendre’s criterion in connection with the first case of Fermat’s
Last Theorem, Publ. Math. Debrecen 2 (1951), 115–120. MR 13:822h

[6] G. Fee and A. Granville, The prime factors of Wendt’s binomial circulant determinant, Math.
Comp. 57 (1991), 839–848. MR 92f:11183

[7] D. Ford and V. Jha, On Wendt’s Determinant and Sophie Germain’s Theorem, Experimental
Math. 2 (1993), 113–119. MR 95b:11029

[8] J.S. Frame, Factors of the binomial circulant determinant, Fibonacci Quart. 18 (1980), 9–23.
MR 81j:11007

[9] C. Helou, On Wendt’s determinant, Math. Comp. 66 (1997), 1341–1346. MR 97j:11014
[10] M. Krasner, A propos du critère de Sophie Germain – Furtwängler pour le premier cas du
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