Distribution of generalized Fermat prime numbers

Authors:
Harvey Dubner and Yves Gallot

Journal:
Math. Comp. **71** (2002), 825-832

MSC (2000):
Primary 11Y11; Secondary 11A41

DOI:
https://doi.org/10.1090/S0025-5718-01-01350-3

Published electronically:
May 17, 2001

MathSciNet review:
1885631

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Numbers of the form are called Generalized Fermat Numbers (GFN). A computational method for testing the probable primality of a GFN is described which is as fast as testing a number of the form . The theoretical distributions of GFN primes, for fixed , are derived and compared to the actual distributions. The predictions are surprisingly accurate and can be used to support Bateman and Horn's quantitative form of ``Hypothesis H" of Schinzel and Sierpinski. A list of the current largest known GFN primes is included.

**1.**P. T. Bateman and R. A. Horn,*A Heuristic Asymptotic Formula Concerning the Distribution of Prime Numbers*, Math. Comp.**16**(1962), 363-367. MR**26:6139****2.**R. E. Crandall,*Projects in Scientific Computation*, Springer TELOS, 1994. MR**95d:65001****3.**R. E. Crandall,*Topics in Advanced Scientific Computation*, Springer TELOS, 1996. MR**97g:65005****4.**R. Crandall and B. Fagin,*Discrete Weighted Transforms and Large-Integer Arithmetic*, Math. Comp.**62**(1994), 305-324. MR**94c:11123****5.**W. J. Dixon and F. J. Massey, Jr.,*Introduction to Statistical Analysis*, 3rd ed., McGraw-Hill, 1969. MR**20:1376****6.**H. Dubner and W. Keller,*Factors of generalized Fermat numbers*, Math. Comp.**64**(1995), 397-405. MR**95c:11010****7.**G. H. Hardy and E. M. Wright,*An Introduction to the Theory of Numbers*, 5th ed., Oxford University Press, 1979. MR**81i:10002****8.**P. Ribenboim,*The New Book of Prime Number Records*, 3rd ed., Springer-Verlag, New York, 1995. MR**96k:11112****9.**D. Shanks,*On the Conjecture of Hardy & Littlewood concerning the Number of Primes of the Form*, Math. Comp.**14**(1960), 321-332. MR**22:10960****10.**D. Shanks,*On Numbers of the Form*, Math. Comp.**15**(1961), 186-189. MR**22:10941****11.**A. Schinzel and W. Sierpinski,*Sur certaines hypothèses concernant les nombres premiers*, Acta Arith.**4**(1958), 185-208, Erratum**5**(1959), 259. MR**21:4936**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11Y11,
11A41

Retrieve articles in all journals with MSC (2000): 11Y11, 11A41

Additional Information

**Harvey Dubner**

Affiliation:
449 Beverly Road, Ridgewood, New Jersey 07450

Email:
hdubner1@compuserve.com

**Yves Gallot**

Affiliation:
12 bis rue Perrey, 31400 Toulouse, France

Email:
galloty@wanadoo.fr

DOI:
https://doi.org/10.1090/S0025-5718-01-01350-3

Keywords:
Prime numbers,
generalized Fermat numbers,
primality proving algorithms

Received by editor(s):
October 13, 1999

Received by editor(s) in revised form:
July 10, 2000

Published electronically:
May 17, 2001

Article copyright:
© Copyright 2001
American Mathematical Society