Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An algorithm for finding all preprojective components of the Auslander-Reiten quiver


Authors: Peter Dräxler and Klara Kögerler
Journal: Math. Comp. 71 (2002), 743-759
MSC (2000): Primary 16G20, 16G70; Secondary 05C38, 05E99
DOI: https://doi.org/10.1090/S0025-5718-01-01404-1
Published electronically: December 21, 2001
MathSciNet review: 1885625
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Auslander-Reiten quiver of a finite-dimensional associative algebra $A$encodes information about the indecomposable finite-dimensional representations of $A$and their homomorphisms. A component of the Auslander-Reiten quiver is called preprojective if it does not admit oriented cycles and each of its modules can be shifted into a projective module using the Auslander-Reiten translation. Preprojective components play an important role in the present research on algebras of finite and tame representation type. We present an algorithm which detects all preprojective components of a given algebra.


References [Enhancements On Off] (What's this?)

  • [AR] M. Auslander, I. Reiten, Representation theory of Artin algebras III, Commun. Algebra 3 (1975), 239-294. MR 52:504
  • [ARS] M. Auslander, I. Reiten, S.O. Smalø, Representation theory of Artin algebras, Cambridge, 1995. MR 96c:16015
  • [BL] R. Bautista, F. Larrión, Auslander-Reiten quivers for certain algebras of finite representation type, J. London Math. Soc. 26 (1982), 43-52. MR 83k:16014
  • [BGRS] R. Bautista, P. Gabriel, A.V. Roiter, L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), 217-285. MR 87g:16031
  • [Bo] K. Bongartz, A criterion for finite representation type, Math Ann. 269 (1984), 1-12. MR 86k:16023
  • [BG] K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. MR 84i:16030
  • [DR] V. Dlab, C.M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1973). MR 56:5657
  • [DP] P. Dräxler, J.A. de la Peña, One the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (2) (1996), 457-469. MR 98a:16020
  • [Ga1] P. Gabriel, Unzerlegbare Darstellungen I, Manuscr. Math. 6 (1972), 71-103. MR 48:11212
  • [Ga2] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Math. 831 (1980), 1-71. MR 82i:16030
  • [GR] P. Gabriel, A.V. Roiter, Representations of finite-dimensional algebras, Encyclopedia of the Mathematical Sciences, Vol. 73, Algebra VIII, A.I. Kostrikin and I.V. Shafarevich (Eds.), Berlin, Heidelberg, New York, 1992, pp. 1-177. MR 94h:16001b
  • [Ha] D. Happel, Composition factors for indecomposable modules, Proc. Amer. Math. Soc. 86 (1982), 29-31. MR 84i:16031
  • [HR] D. Happel, C.M. Ringel, Directing projective modules, Arch. Math. 60 (1993), 237-246. MR 94b:16016
  • [KP] S. Kasjan, J.A. de la Peña, Constructing the preprojective components of an algebra, J. Algebra 179 (1996), 793-807. MR 97c:16015
  • [Li] S. Liu, Shapes of connected components of the Auslander-Reiten quivers of Artin algebras, Representation theory of algebras and related topics (Mexico City, 1994), 109-137, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996. MR 97e:16037
  • [Ri] C.M. Ringel, Tame algebras and integral quadratic forms, Springer LNM 1099 (1984). MR 87f:16027
  • [Sc] T. Scheuer, The canonical decomposition of the poset of a hammock, J. London Math. Soc. (2) 49 (1994), 232-243. MR 95a:16017

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 16G20, 16G70, 05C38, 05E99

Retrieve articles in all journals with MSC (2000): 16G20, 16G70, 05C38, 05E99


Additional Information

Peter Dräxler
Affiliation: Fakultät für Mathematik, Universität Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany

Klara Kögerler
Affiliation: Fakultät für Mathematik, Universität Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany

DOI: https://doi.org/10.1090/S0025-5718-01-01404-1
Keywords: Representations of algebras, Auslander-Reiten quiver, preprojective components
Received by editor(s): April 6, 1999
Received by editor(s) in revised form: July 7, 2000
Published electronically: December 21, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society