Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Finite SAGBI bases for polynomial invariants of conjugates of alternating groups


Author: Manfred Göbel
Journal: Math. Comp. 71 (2002), 761-765
MSC (2000): Primary 13A50, 12Y05; Secondary 20B35, 14Q99
DOI: https://doi.org/10.1090/S0025-5718-01-01405-3
Published electronically: October 25, 2001
MathSciNet review: 1885626
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well-known, that the ring $\mathbb{C} [X_1,\dotsc,X_n]^{A_n}$ of polynomial invariants of the alternating group $A_n$ has no finite SAGBI basis with respect to the lexicographical order for any number of variables $n \ge 3$. This note proves the existence of a nonsingular matrix $\delta_n \in GL(n,\mathbb{C} )$ such that the ring of polynomial invariants $\mathbb{C} [X_1,\dotsc,X_n]^{A_n^{\delta_n}}$, where $A_n^{\delta_n}$ denotes the conjugate of $A_n$ with respect to $\delta_n$, has a finite SAGBI basis for any $n \geq 3$.


References [Enhancements On Off] (What's this?)

  • 1. Becker, T., Weispfenning, V., in Cooperation with Kredel, H. (1993). Gröbner Bases: A Computational Approach to Commutative Algebra. Springer MR 95c:13018
  • 2. Göbel, M. (1992). Reduktion $G$-symmetrischer Polynome für beliebige Permutationsgruppen $G$. Diplomarbeit. Universität Passau
  • 3. Göbel, M. (1995). Computing Bases for Permutation-Invariant Polynomials. Journal of Symbolic Computation 19, 285-291 MR 96f:13006
  • 4. Göbel, M. (1997). The Invariant Package of MAS. In: Comon, H., (ed.), Rewriting Techniques and Applications, 8th Intl. Conf., RTA-97, volume 1232 of LNCS, Springer, 327-330 MR 98i:68015
  • 5. Göbel, M. (1998). A Constructive Description of SAGBI Bases for Polynomial Invariants of Permutation Groups. Journal of Symbolic Computation 26, 261-272 MR 99f:13002
  • 6. Göbel, M. (1999). The ``Smallest'' Ring of Polynomial Invariants of a Permutation Group which has No Finite SAGBI Bases with respect to Any Admissible Order. Theoretical Computer Science 225(1-2), 177-184 MR 2000f:13007
  • 7. Göbel, M, Walter, J. (1999). Bases for Polynomial Invariants of Conjugates of Permutation Groups. Journal of Algorithms 32(1), 58-61 CMP 99:14
  • 8. Robbiano, L., Sweedler, M. (1990). Subalgebra Bases. In: Bruns, W., Simis, A. (eds.), Commutative Algebra (Lect. Notes Math. 1430). Springer, 61-87 MR 91f:13027
  • 9. Sturmfels, B. (1995). Gröbner Bases and Convex Polytopes. AMS University Lecture Series, Vol. 8, Providence RI MR 97b:13034
  • 10. Weispfenning, V. (1987). Admissible Orders and Linear Forms. ACM SIGSAM Bulletin 21/2, 16-18

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 13A50, 12Y05, 20B35, 14Q99

Retrieve articles in all journals with MSC (2000): 13A50, 12Y05, 20B35, 14Q99


Additional Information

Manfred Göbel
Affiliation: Dettenbachstraße 16, 94154 Neukirchen vorm Wald, Germany
Email: goebel@informatik.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0025-5718-01-01405-3
Keywords: Algorithmic invariant theory, finite SAGBI bases, alternating groups, rewriting techniques
Received by editor(s): September 7, 1999
Received by editor(s) in revised form: July 19, 2000
Published electronically: October 25, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society