Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Finite SAGBI bases for polynomial invariants of conjugates of alternating groups


Author: Manfred Göbel
Journal: Math. Comp. 71 (2002), 761-765
MSC (2000): Primary 13A50, 12Y05; Secondary 20B35, 14Q99
Published electronically: October 25, 2001
MathSciNet review: 1885626
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well-known, that the ring $\mathbb{C} [X_1,\dotsc,X_n]^{A_n}$ of polynomial invariants of the alternating group $A_n$ has no finite SAGBI basis with respect to the lexicographical order for any number of variables $n \ge 3$. This note proves the existence of a nonsingular matrix $\delta_n \in GL(n,\mathbb{C} )$ such that the ring of polynomial invariants $\mathbb{C} [X_1,\dotsc,X_n]^{A_n^{\delta_n}}$, where $A_n^{\delta_n}$ denotes the conjugate of $A_n$ with respect to $\delta_n$, has a finite SAGBI basis for any $n \geq 3$.


References [Enhancements On Off] (What's this?)

  • 1. K. N. Raghavan, Local-global principle for annihilation of local cohomology, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 329–331. MR 1266189, 10.1090/conm/159/01513
  • 2. Göbel, M. (1992). Reduktion $G$-symmetrischer Polynome für beliebige Permutationsgruppen $G$. Diplomarbeit. Universität Passau
  • 3. Manfred Göbel, Computing bases for rings of permutation-invariant polynomials, J. Symbolic Comput. 19 (1995), no. 4, 285–291. MR 1339909, 10.1006/jsco.1995.1017
  • 4. Hubert Comon (ed.), Rewriting techniques and applications, Lecture Notes in Computer Science, vol. 1232, Springer-Verlag, Berlin, 1997. MR 1605520
  • 5. Manfred Göbel, A constructive description of SAGBI bases for polynomial invariants of permutation groups, J. Symbolic Comput. 26 (1998), no. 3, 261–272. MR 1633927, 10.1006/jsco.1998.0210
  • 6. Manfred Göbel, The “smallest” ring of polynomial invariants of a permutation group which has no finite SAGBI bases w.r.t. any admissible order, Theoret. Comput. Sci. 225 (1999), no. 1-2, 177–184. MR 1708024, 10.1016/S0304-3975(98)00340-5
  • 7. Göbel, M, Walter, J. (1999). Bases for Polynomial Invariants of Conjugates of Permutation Groups. Journal of Algorithms 32(1), 58-61 CMP 99:14
  • 8. Lorenzo Robbiano and Moss Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 61–87. MR 1068324, 10.1007/BFb0085537
  • 9. Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949
  • 10. Weispfenning, V. (1987). Admissible Orders and Linear Forms. ACM SIGSAM Bulletin 21/2, 16-18

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 13A50, 12Y05, 20B35, 14Q99

Retrieve articles in all journals with MSC (2000): 13A50, 12Y05, 20B35, 14Q99


Additional Information

Manfred Göbel
Affiliation: Dettenbachstraße 16, 94154 Neukirchen vorm Wald, Germany
Email: goebel@informatik.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0025-5718-01-01405-3
Keywords: Algorithmic invariant theory, finite SAGBI bases, alternating groups, rewriting techniques
Received by editor(s): September 7, 1999
Received by editor(s) in revised form: July 19, 2000
Published electronically: October 25, 2001
Article copyright: © Copyright 2001 American Mathematical Society