Three-point finite-difference schemes, Padé and the spectral Galerkin method. I. One-sided impedance approximation

Authors:
Vladimir Druskin and Shari Moskow

Journal:
Math. Comp. **71** (2002), 995-1019

MSC (2000):
Primary 65N06, 65N35

Published electronically:
November 19, 2001

MathSciNet review:
1898743

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method for calculating special grid placement for three-point schemes which yields exponential superconvergence of the Neumann to Dirichlet map has been suggested earlier. Here we show that such a grid placement can yield impedance which is equivalent to that of a spectral Galerkin method, or more generally to that of a spectral Galerkin-Petrov method. In fact we show that for every stable Galerkin-Petrov method there is a three-point scheme which yields the same solution at the boundary. We discuss the application of this result to partial differential equations and give numerical examples. We also show equivalence at one corner of a two-dimensional optimal grid with a spectral Galerkin method.

**1.**N. I. Achieser,*Theory of approximation*, Dover Publications, Inc., New York, 1992. Translated from the Russian and with a preface by Charles J. Hyman; Reprint of the 1956 English translation. MR**1217081****2.**Sergey Asvadurov, Vladimir Druskin, and Leonid Knizhnerman,*Application of the difference Gaussian rules to solution of hyperbolic problems*, J. Comput. Phys.**158**(2000), no. 1, 116–135. MR**1743334**, 10.1006/jcph.1999.6410**3.**George A. Baker Jr. and Peter Graves-Morris,*Padé approximants*, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge University Press, Cambridge, 1996. MR**1383091****4.**K. Black,*Spectral elements on infinite domains*, SIAM J. Sci. Comput., (1998)**19**, 5, pp. 1667-1681. CMP**98:11****5.**J. P. Boyd,*Chebyshev & Fourier spectral methods*, Springer-Verlag, 1989.**6.**E. Braverman, M. Israeli, and A. Averbuch,*A fast spectral solver for a 3D Helmholtz equation*, SIAM J. Sci. Comput.**20**(1999), no. 6, 2237–2260 (electronic). MR**1703270**, 10.1137/S1064827598334241**7.**V. Druskin,*Spectrally optimal finite-difference grids in unbounded domains*, Schlumberger-Doll Research, Research Note, EMG-002-97-22 (1997).**8.**Vladimir Druskin and Leonid Knizhnerman,*Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semi-infinite domain*, SIAM J. Numer. Anal.**37**(2000), no. 2, 403–422 (electronic). MR**1740773**, 10.1137/S0036142997330792**9.**V. Druskin and L. Knizhnerman,*Gaussian spectral rules for second order finite-difference schemes*, Mathematical journey through analysis, matrix theory, and scientific computation. Numer. Algorithms**25**(2000), 139-159. CMP**2001:11****10.**V. Druskin and S. Moskow,*Three-point finite difference schemes, Padé and the spectral Galerkin method: II. Multidomain two-dimensional impedance approximation*, in preparation.**11.**Bengt Fornberg,*A practical guide to pseudospectral methods*, Cambridge Monographs on Applied and Computational Mathematics, vol. 1, Cambridge University Press, Cambridge, 1996. MR**1386891****12.**A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin,*On the rate of convergence of Padé approximants of orthogonal expansions*, Progress in approximation theory (Tampa, FL, 1990) Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 169–190. MR**1240782**, 10.1007/978-1-4612-2966-7_7**13.**A. A. Gončar and Giermo Lopes L.,*Markov’s theorem for multipoint Padé approximants*, Mat. Sb. (N.S.)**105(147)**(1978), no. 4, 512–524, 639 (Russian). MR**496592****14.**David Ingerman, Vladimir Druskin, and Leonid Knizhnerman,*Optimal finite difference grids and rational approximations of the square root. I. Elliptic problems*, Comm. Pure Appl. Math.**53**(2000), no. 8, 1039–1066. MR**1755950**, 10.1002/1097-0312(200008)53:8<1039::AID-CPA4>3.3.CO;2-9**15.***American Mathematical Society Translations, Series 2. Vol. 103: Nine papers in analysis*, American Mathematical Society, Providence, R.I., 1974. MR**0328627****16.**Steven A. Orszag,*Spectral methods for problems in complex geometries*, J. Comput. Phys.**37**(1980), no. 1, 70–92. MR**584322**, 10.1016/0021-9991(80)90005-4**17.**Beresford N. Parlett,*The symmetric eigenvalue problem*, Classics in Applied Mathematics, vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original. MR**1490034****18.**P. P. Petrushev and V. A. Popov,*Rational approximation of real functions*, Encyclopedia of Mathematics and its Applications, vol. 28, Cambridge University Press, Cambridge, 1987. MR**940242****19.**Barna Szabó and Ivo Babuška,*Finite element analysis*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1991. MR**1164869**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N06,
65N35

Retrieve articles in all journals with MSC (2000): 65N06, 65N35

Additional Information

**Vladimir Druskin**

Affiliation:
Schlumberger-Doll Research, Old Quarry Rd, Ridgefield, Connecticut 06877

Email:
druskin@ridgefield.sdr.slb.com

**Shari Moskow**

Affiliation:
Department of Mathematics, University of Florida, 358 Little Hall, P.O. Box 118105, Gainesville, Florida 32611-8105

Email:
moskow@math.ufl.edu

DOI:
https://doi.org/10.1090/S0025-5718-01-01349-7

Keywords:
Second order scheme,
exponential superconvergence,
pseudospectral,
Galerkin-Petrov,
rational approximations

Received by editor(s):
December 2, 1999

Received by editor(s) in revised form:
July 12, 2000, and September 26, 2000

Published electronically:
November 19, 2001

Article copyright:
© Copyright 2001
American Mathematical Society