ESTIMATES OF $\theta(x; k, l)$ FOR LARGE VALUES OF x

PIERRE DUSART

Abstract. We extend a result of Ramaré and Rumely, 1996, about the Chebyshev function θ in arithmetic progressions. We find a map $\varepsilon(x)$ such that $|\theta(x; k, l) - x/\varphi(k)| < x\varepsilon(x)$ and $\varepsilon(x) = O \left(\frac{\ln x}{\ln^a x} \right)$ (for all $a > 0$), whereas $\varepsilon(x)$ is a constant. Now we are able to show that, for $x \geq 1531$,

$$|\theta(x; 3, l) - x/2| < 0.262 \frac{x}{\ln x}$$

and, for $x \geq 151$,

$$\pi(x; 3, l) > \frac{x}{2\ln x}.$$

1. Introduction

Let $R = 9.645908801$ and $X = \sqrt{\frac{\ln x}{R}}$. Rosser [6] and Schoenfeld [7, Th. 11 p. 342] showed that, for $x \geq 101$,

$$|\theta(x) - x|, |\psi(x) - x| < x\varepsilon(x),$$

where

$$\varepsilon(x) = \sqrt{\frac{8}{17\pi}} X^{1/2} \exp(-X).$$

We adapt their work to the case of arithmetic progressions. Let us recall the usual notations for nonnegative real x:

$$\theta(x; k, l) = \sum_{\substack{p \equiv l \pmod{k} \\ p \leq x}} \ln p, \quad \text{where } p \text{ is a prime number},$$

$$\psi(x; k, l) = \sum_{\substack{n \equiv l \pmod{k} \\ n \leq x}} \Lambda(n), \quad \text{where } \Lambda \text{ is Von Mangold’s function},$$

and φ is Euler’s function. We show, for $x \geq x_0(k)$ where $x_0(k)$ can be easily computed, that

$$|\theta(x; k, l) - x/\varphi(k)|, |\psi(x; k, l) - x/\varphi(k)| < x\varepsilon(x),$$

where

$$\varepsilon(x) = 3 \sqrt{\frac{k}{\varphi(k)C_1(k)}} X^{1/2} \exp(-X).$$

Received by the editor February 23, 1998 and, in revised form, December 17, 1998 and August 21, 2000.

2000 Mathematics Subject Classification. Primary 11N13, 11N56; Secondary 11Y35, 11Y40.

Key words and phrases. Bounds for basic functions, arithmetic progression.

©2001 American Mathematical Society
for an explicit constant $C_1(k)$. We apply the above results for $k = 3$. For small values, we use Ramaré and Rumely’s results [3]. We show that for $x \geq 1531$,

$$|\theta(x; 3, l) - x/2| < 0.262 \frac{x}{\ln x}.\quad (1)$$

If we assume that the Generalized Riemann Hypothesis is true, then we can show that, for $x > 1$ and $k \leq 432$,

$$|\psi(x; k, l) - x/\varphi(k)| < \frac{1}{4\pi} \sqrt{x} \ln^2 x.$$

Let us define, as usual, $\pi(x)$ the number of primes not greater than x. In 1962, Rosser and Schoenfeld ([5, p. 69]) found a lower bound for $\pi(x)$:

$$\pi(x) > \frac{x}{\ln x} \quad \text{for } x \geq 17.\quad (2)$$

Letting

$$\pi(x; k, l) = \sum_{p \leq x, p \equiv 1 \mod k} 1,$$

we show an analogous result in the case of arithmetic progression with $k = 3$ and $l = 1$ or 2,

$$\pi(x; 3, l) > \frac{x}{2 \ln x} \quad \text{for } x \geq 151.$$

This result, inferred from (1), implies (2) and cannot be proved with Ramaré and Rumely’s results.

The method used for $k = 3$ can also be applied for other fixed integers k.

2. Preliminary Lemmas

Notations. We will always denote by ρ a nontrivial zero of Dirichlet’s function L, that is to say a zero such that $0 < \Re \rho < 1$. We write $\rho = \beta + i\gamma$. Let $\varphi(\chi)$ be the set of the zeros ρ of the function $L(s, \chi)$, with $0 < \beta < 1$.

For a positive real H, following Ramaré and Rumely, we say that GRH(k,H) hold\(^\ddagger\) if, for all χ modulo k, all the nontrivial zeros of $L(s, \chi)$ with $|\gamma| \leq H$ are such that $\beta = 1/2$.

As in Rosser and Schoenfeld (in [6, 7] where the case $k = 1$ is studied), we must know the distribution of $L(s, \chi)$’s zeros; namely, find a real H such that GRH(k,H) is satisfied and is a zero-free region.

2.1. Zero-free region.

Theorem 1 (Ramaré and Rumely [3]). If χ is a character with conductor k, $H \geq 1000$, and $\rho = \beta + i\gamma$ is a zero of $L(s, \chi)$ with $|\gamma| \geq H$, then there exists a computable constant $C_1(\chi, H)$ such that

$$1 - \beta \geq \frac{1}{R \ln(k|\gamma|/C_1(\chi, H))}.\quad (3)$$

\(^\ddagger\)Note that our GRH is an acronym for the usual Generalized Riemann Hypothesis.

<table>
<thead>
<tr>
<th>k</th>
<th>H_k</th>
<th>$C_1(\chi, H_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5450000000</td>
<td>38.31</td>
</tr>
<tr>
<td>3</td>
<td>10000</td>
<td>20.92</td>
</tr>
<tr>
<td>420</td>
<td>2500</td>
<td>56.59</td>
</tr>
</tbody>
</table>

Proof. See Theorem 3.6.3 of Ramaré and Rumely [3, p. 409].

Remark. For $k \geq 1$ and $H_k \geq 1000$, $C_1(\chi, H) \geq C_1(\chi_0, 1000) \geq 9.14$.

As $C_1(\chi, H)$ could be large, we limit $C_1(\chi, H)$ up to 32π to make some computations. So we have in our hypothesis

$$9.14 \leq C_1(\chi, H) \leq 32\pi.$$

From now on,

$$C_1(k) = \min(\min_{\chi \mod k} C_1(\chi, H_\chi), 32\pi).$$

2.2. GRH(k, H) and $N(T, \chi)$.

Lemma 1 (McCurley [1]). Let $C_2 = 0.9185$ and $C_3 = 5.512$. Write $F(y, \chi) = \frac{y}{\pi} \ln \left(\frac{ky}{2\pi e} \right)$ and $R(y, \chi) = C_2 \ln(ky) + C_3$. If χ is a character of Dirichlet with conductor k, if $T \geq 1$ is a real number, and if $N(T, \chi)$ denotes the number of zeros $\beta + i\gamma$ of $L(s, \chi)$ in the rectangle $0 < \beta < 1$, $|\gamma| \leq T$, then

$$|N(T, \chi) - F(T, \chi)| \leq R(T, \chi).$$

Lemma 2 (deduced from [3] Theorem 2.1.1, p. 399 and [3]).

- GRH($1, H$) is true for $H = 5.45 \times 10^8$.
- GRH(k, H) is true for $H = 10000$ and $k \leq 13$.
- GRH($k, 2500$) is true for sets
 $$E_1 = \{k \leq 72\},$$
 $$E_2 = \{k \leq 112, k \text{ not prime}\},$$
 $$E_3 = \{116, 117, 120, 121, 124, 125, 128, 132, 140, 143, 144, 156, 163, 169, 180, 216, 243, 256, 360, 420, 432\}.$$

2.3. Estimates of $|\psi(x; k, l) - x/\varphi(k)|$ using properties of zeros of $L(s, \chi)$.

As in Ramaré and Rumely, we remove the zeros with $\beta = 0$ and we consider only primitive L-series by adding small terms. Here we take the version stated in [3] Theorem 4.3.1 which is deduced from [1].

Theorem 2 (McCurley [1]). Let $x > 2$ be a real number, m and k two positive integers, δ a real number such that $0 < \delta < \frac{x-2}{mx}$, and T a positive real. Let

$$A(m, \delta) = \frac{1}{\delta^m} \sum_{j=0}^{m} \binom{m}{j} (1 + j\delta)^{m+1}. $$
Assume \(\text{GRH}(k, 1) \). Then
\[
\frac{\varphi(k)}{x} \max_{1 \leq y \leq x} \left| \psi(y; k, l) - \frac{y}{\varphi(k)} \right| < A(m, \delta) \sum_{\chi} \sum_{\rho \in \mu(k)} \frac{x^{\beta - 1}}{\rho(\rho + 1) \cdots (\rho + m)}
\]
\[
+ \left(1 + \frac{m\delta}{2} \right) \sum_{\chi} \sum_{\rho \in \mu(k)} \frac{x^{\beta - 1}}{|\rho|} + \frac{m\delta}{2} + \tilde{R}/x,
\]
where \(\sum_{\chi} \) denotes the summation over all characters modulo \(k \), \(\tilde{R} = \varphi(k)((f(k) + 0.5) \ln x + 4 \ln k + 13.4) \) and \(f(k) = \sum_{p \leq k} \frac{1}{p-1} \).

2.4. One more explicit form of estimates. The next lemma can be found in [3] with the difference that the authors assumed \(\text{GRH}(k, H) \) but in fact they used only \(\text{GRH}(k, 1) \). Since we must apply it with \(T > H \), we repeat the proof.

Lemma 3. Let \(\chi \) be a character modulo \(k \). Assume \(\text{GRH}(k, 1) \). Then, for any \(T \geq 1 \), we have
\[
\sum_{\substack{|\gamma| \leq T \\ \rho \in \mu(\chi)}} \frac{1}{|\rho|} \leq \tilde{E}(T)
\]
with \(\tilde{E}(T) = \frac{1}{2\pi} \ln^2(T) + \frac{\ln(\frac{T}{\pi})}{T} \ln(T) + C_2 + \frac{2}{\pi^2} \ln \left(\frac{k}{2\pi e} \right) + C_3 \ln k + C_3 \).

Proof. For \(|\gamma| \leq 1 \), we have \(\text{GRH}(k, 1) \) and so
\[
\sum_{\substack{|\gamma| \leq 1 \\ \rho \in \mu(\chi)}} \frac{1}{|\rho|} \leq \sum_{\substack{|\gamma| \leq 1 \\ \rho \in \mu(\chi)}} \frac{1}{|1/2 + i\gamma|} \leq 2N(1, \chi).
\]
For \(|\gamma| > 1 \),
\[
\sum_{\substack{1 < |\gamma| \leq T \\ \rho \in \mu(\chi)}} \frac{1}{|\rho|} \leq \int_1^T \frac{dN(t, \chi)}{t} = \int_1^T \frac{N(t, \chi)}{t^2} dt + \frac{N(T, \chi)}{T} - \frac{N(1, \chi)}{1}.
\]
Thus,
\[
\sum_{\substack{|\gamma| \leq T \\ \rho \in \mu(\chi)}} \frac{1}{|\rho|} \leq \int_1^T \frac{N(t, \chi)}{t^2} dt + \frac{N(T, \chi)}{T} + N(1, \chi).
\]

We conclude by Lemma [4] that
\[
\int_1^T \frac{N(t, \chi)}{t^2} dt \leq \int_1^T F(t, \chi) + R(t, \chi) dt
\]
\[
= \frac{1}{\pi} \int_1^T \frac{\ln(kt/(2\pi e))}{t} dt + C_2 \int_1^T \frac{\ln(kt)}{t^2} dt + C_3 \int_1^T \frac{1}{t^2} dt
\]
\[
= \frac{1}{\pi} \left[\frac{1}{2} \ln^2 \left(\frac{kT}{2\pi e} \right) \right]_1^T
\]
\[
+ C_2 \left\{ \left[\frac{\ln(kt)}{t} \right]_1^T + \int_1^T \frac{1}{t^2} dt \right\} + C_3 [-1/t]_1^T
\]
\[
= \frac{1}{2\pi} \ln^2 T + \frac{1}{\pi} \ln \left(\frac{k}{2\pi e} \right) \ln T + C_2 \left(\frac{\ln(kT)}{T} + \ln k - \frac{1}{T} + 1 \right)
\]
\[
+ C_3 (1 - 1/T).
\]
In the same way, we have an upper bound of
\[
\frac{N(T, \chi)}{T} \quad \text{with} \quad \frac{F(T, \chi) + R(T, \chi)}{T}
\]
and
\[
N(1, \chi) \quad \text{with} \quad F(1, \chi) + R(1, \chi).
\]
Finally, we obtain
\[
\sum_{\rho \in \rho(\chi)} \frac{1}{|\rho|} \leq \frac{1}{2\pi} \ln^2(T) + \frac{\ln\left(\frac{k}{2\pi}\right)}{\pi} \ln(T)
\]
\[
+ C_2 + 2 \left(\frac{1}{\pi} \ln\left(\frac{k}{2\pi}\right) + C_2 \ln k + C_3\right) - \frac{C_2}{T}.
\]

Using the facts that

- if \(\rho \) is a zero of \(L(s, \chi) \) then \(\overline{\rho} \) is zero of \(L(s, \overline{\chi}) \),
- these zeros are symmetrical with to the line \(\Re(z) = 1/2 \),

we obtain Lemma 4 by examining the proof of [3, Lemma 4.1.3].

Lemma 4 ([3]). Let

\[
\phi_m(t) = \frac{1}{|t|^{m+1}} \exp\left(-\frac{\ln x}{R \ln(k|t|/C_1(k))}\right)
\]

with \(R = 9.645908801 \). Let \(T \geq H \). We have
\[
\sum_{\rho \in \rho(\chi)} \frac{x^\beta}{|\gamma|^m} + \sum_{\rho \in \rho(\overline{\chi})} \frac{x^\beta}{|\gamma|^m} \leq x \sum_{\rho \in \rho(\chi)} \phi_m(\gamma) + \sqrt{x} \sum_{\rho \in \rho(\overline{\chi})} \frac{1}{|\gamma|^m}.
\]

Let us rewrite Lemma 7 of [3] to adapt it to the new functions \(F(y, \chi) \) and \(R(y, \chi) \) which we use.

Lemma 5. Write \(N(y) = N(y, \chi) \), \(F(y) = F(y, \chi) \), and \(R(y) = R(y, \chi) \). Let \(1 < U \leq V \) and \(\phi(y) \) be a positive and differentiable function for \(U \leq y \leq V \). Let \((W - y)\phi'(y) \geq 0 \) for \(U < y < V \), where \(W \) does not necessarily belong to \([U, V]\). Let \(Y \) be that one of the numbers \(U, V, W \) which is not numerically the least or greatest (or is the repeated one, if two among \(U, V, W \) are equal). Take \(j = 0 \) or \(1 \), accordingly as \(W < V \) or \(W \geq V \). Then
\[
\sum_{U < |\gamma| \leq V} \phi(|\gamma|) \leq \frac{1}{\pi} \int_U^V \phi(y) \ln\left(\frac{ky}{2\pi}\right) dy + (-1)^j C_2 \int_U^V \frac{\phi(y)}{y} dy + B_j(Y, U, V),
\]
where
\[
B_0(Y, U, V) = 2R(Y)\phi(Y) + \{N(V) - F(V) - R(V)\}\phi(V)
\]
\[
- \{N(U) - F(U) + R(U)\}\phi(U),
\]
\[
B_1(Y, U, V) = \{N(V) - F(V) + R(V)\}\phi(V) - \{N(U) - F(U) + R(U)\}\phi(U).
\]
Proof. We have

$$\sum_{U<|\gamma|\leq V} \phi(|\gamma|) = \int_{U}^{V} \phi(y) dN(y)$$

$$= - \int_{U}^{V} N(y)\phi'(y)dy + N(V)\phi(V) - N(U)\phi(U).$$

• $j = 1$. We have $W > V$ and so $Y = \min(V, W) = V$. According to Theorem 1, $N(y) \geq F(y) - R(y)$.

$$\sum_{U<|\gamma|\leq V} \phi(|\gamma|) \leq \left[(N(y) - F(y) + R(y))\phi(y) \right]_{U}^{V} + \frac{1}{\pi} \int_{U}^{V} \ln \left(\frac{ky}{2\pi} \right) \phi(y) dy$$

$$- \int_{U}^{V} R'(y)\phi(y)dy$$

because $F'(y) = \frac{1}{\pi} \left(\ln \left(\frac{ky}{2\pi} \right) + 1 \right) = \frac{1}{\pi} \ln \left(\frac{ky}{2\pi} \right)$. Moreover,

$$- \int_{U}^{V} R'(y)\phi(y)dy = -C_2 \int_{Y}^{V} \frac{\phi(y)}{y} dy.$$

• $j = 0$. We have $V > W$. Take $Y = \max(U, W)$. Split the integral at Y. Then $-\phi'(y) \leq 0$ for $y \in [U, Y]$ and $-\phi'(y) \geq 0$ for $y \in [Y, V]$. Replacing $N(y)$ by $F(y) - R(y)$ in the first part and by $F(y) + R(y)$ in the second part, we obtain

$$\sum_{U<|\gamma|\leq V} \phi(|\gamma|) \leq \frac{1}{\pi} \int_{U}^{V} \ln \left(\frac{ky}{2\pi} \right) \phi(y) dy + \int_{Y}^{V} R'(y)\phi(y)dy - \int_{V}^{Y} R'(y)\phi(y)dy$$

$$+ B_0(Y, U, V).$$

Moreover,

$$\int_{Y}^{V} R'(y)\phi(y)dy \leq (-1)^j C_2 \int_{U}^{V} \frac{\phi(y)}{y} dy$$

and

$$- \int_{U}^{Y} R'(y)\phi(y)dy \leq 0.$$

We want to apply Lemma 5 with $\phi = \phi_m$ defined by (5) and with $W = W_m$ being the root of ϕ'_m. Let

$$X = \sqrt{\frac{\ln x}{R}}$$

and, for $m \geq 0$,

$$W_m = \frac{C_1(k)}{k} \exp \left(\frac{X}{\sqrt{m + 1}} \right).$$

Corollary 1 (Corollary from Lemma 5). Under the hypothesis of Lemma 5 if moreover $\frac{2k}{k} \leq U$, then

$$\sum_{U<|\gamma|\leq V} \phi(|\gamma|) \leq \left\{ 1/\pi + (-1)^j q(Y) \right\} \int_{U}^{V} \phi(y) \ln \left(ky/2\pi \right) dy + B_j(Y, U, V),$$

where $q(y) = \frac{C_2}{y \ln (\frac{ky}{2\pi})}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. The map \(y \mapsto 1/(y \ln(ky/2\pi)) \) is decreasing if \(y > 2\pi/(ke) \).

- Case \((j = 0)\), then \(Y = \max(U, W) \).

\[
\sum_{U < |\gamma| \leq V} \phi(|\gamma|) < B_0(U, W, V) + \frac{1}{\pi} \int_U^V \phi(y) \ln \left(\frac{ky}{2\pi} \right) dy + \int_Y^V R'(y) \phi(y) dy.
\]

\[
\int_Y^V R'(y) \phi(y) dy = C_2 \int_Y^V \phi(y) \frac{dy}{y} = C_2 \int_Y^V \phi(y) \ln(\frac{ky}{2\pi}) \frac{dy}{y \ln(\frac{ky}{2\pi})} \leq \frac{C_2}{Y \ln(kY/2\pi)} \int_Y^V \phi(y) \ln(\frac{ky}{2\pi}) dy.
\]

- Case \((j = 1)\), then \(Y = V \).

\[
- \int_U^V R'(y) \phi(y) dy \leq - \frac{C_2}{V \ln(kV/2\pi)} \int_U^V \phi(y) \ln(\frac{ky}{2\pi}) dy.
\]

\[\square\]

Theorem 3. Let \(k \geq 1 \) an integer, \(H \geq 1000 \) a real number. Assume GRH\((k, H)\).

Let \(x_0 > 2 \) be a real number, \(m \) a positive integer, and \(\delta \) a real number such that \(0 < \delta < (x_0 - 2)/(mx_0) \) and let \(Y \) be defined as in Lemma 5. We write

\[
\hat{A}_H = \frac{1}{\pi} \int_H^\infty \phi_m(y) \ln \left(\frac{ky}{2\pi} \right) dy + C_2 \int_H^\infty \frac{\phi_m(y)}{y} dy,
\]

\[
\hat{B}_H = B_0(Y, H, \infty),
\]

\[
\hat{C}_H = \frac{1}{m \pi H^m} \left(\ln \left(\frac{kH}{2\pi} \right) + 1/m \right),
\]

\[
\hat{D}_H = \left(2C_2 \ln(kH) + 2C_3 + \frac{C_2}{m + 1} \right) / H^{m+1}.
\]

Then for all \(x \geq x_0 \), we have

\[
\frac{\varphi(k)}{x} \max_{1 \leq y \leq x} |\psi(y; k, l)| - \frac{y}{\varphi(k)} \leq A(m, \delta) \frac{\varphi(k)}{2} \left(\hat{A}_H + \hat{B}_H + (\hat{C}_H + \hat{D}_H) / \sqrt{x} \right) + \left(1 + \frac{m\delta}{2} \right) \frac{\varphi(k)\hat{E}(H)}{\sqrt{x}} + \frac{m\delta}{2} + \hat{R}/x.
\]

Remark. We find a version of Theorem 4.3.2 of [3] where \(x_0 \) is replaced by \(x \) in \(\hat{A} \) and \(\hat{B} \).

Proof. According to Theorem 3, we have

\[
\frac{\varphi(k)}{x} \max_{1 \leq y \leq x} |\psi(y; k, l)| - \frac{y}{\varphi(k)} < A(m, \delta) \sum_{\chi \in \chi_{\psi(k)}} \sum_{\rho \in \rho(k) \delta > H} \frac{x^{\beta-1}}{|\rho + 1 \cdots (\rho + m)|} + \left(1 + \frac{m\delta}{2} \right) \sum_{\chi \in \chi_{\psi(k)}} \sum_{\rho \in \rho(k) \delta > H} \frac{x^{\beta-1}}{|\rho|} + \frac{m\delta}{2} + \hat{R}/x.
\]
We separately examine the different parts:

- We have

\[
\sum_{\chi} \sum_{\rho \in \rho(\chi)} \frac{x^{\beta-1}}{|\rho(\rho + 1) \cdots (\rho + m)|} \leq \sum_{\chi} \sum_{\rho \in \rho(\chi)} \frac{x^{\beta-1}}{|\gamma|^{m+1}}.
\]

By Lemma 4,

\[
\sum_{\chi} \sum_{\rho \in \rho(\chi)} \frac{x^{\beta-1}}{|\gamma|^{m+1}} = \frac{1}{2} \left(\sum_{\rho \in \rho(\chi)} \frac{x^{\beta-1}}{|\gamma|^{m+1}} + \sum_{\rho \in \rho(\chi)} \frac{x^{\beta-1}}{|\gamma|^{m+1}} \right)
\leq \frac{1}{2} \sum_{\chi} \left(\sum_{\rho \in \rho(\chi)} \phi_{\gamma}(\rho) + \frac{1}{\sqrt{x}} \sum_{\rho \in \rho(\chi)} \frac{1}{|\gamma|^{m+1}} \right).
\]

Using Lemma 5 with \(U = H, V = 1, \phi = \phi_{m}, W = W_{m}, \)

\[
\sum_{\rho \in \rho(\chi)} \phi_{\gamma}(\rho) \leq \hat{A}_{H} + \hat{B}_{H}.
\]

Integration by parts gives

\[
\sum_{\rho \in \rho(\chi)} \frac{1}{|\gamma|^{m+1}} \leq \hat{C}_{H} + \hat{D}_{H}.
\]

- By GRH\((k, H)\) we have \(\beta = 1/2\) for all \(|\gamma| \leq H\), and by Lemma 3

\[
\sum_{\rho \in \rho(\chi)} \frac{x^{\beta-1}}{|\rho|} \leq \hat{E}(H)/\sqrt{x}.
\]

2.5. The leading term \((\hat{A}_{H})\). To obtain an upper bound for the leading term, we proceed like Rosser and Schoenfeld with upper bounds on the integrals. The next three lemmas are issued directly from [6, p. 251-255].

Lemma 6 (Functions of incomplete Bessel type). Let

\[
K_{\nu}(z, u) = \frac{1}{2} \int_{u}^{\infty} t^{\nu-1}H^{2}(t)dt,
\]

where \(z > 0, u \geq 0, \) and

\[
H^{2}(t) = \{H(t)\}^{2} = \exp\left\{-\frac{z}{2}(t + 1/t)\right\}.
\]

Further, write \(K_{\nu}(z, 0) = K_{\nu}(z)\). Then

\[
K_{1}(z) \leq \sqrt{\frac{\pi}{2z}} \exp(-z)\left(1 + \frac{3}{8z}\right),
\]

\[
K_{2}(z) \leq \sqrt{\frac{\pi}{2z}} \exp(-z)\left(1 + \frac{15}{8z} + \frac{105}{128z^{2}}\right).
\]

Lemma 7.

\[
K_{\nu}(z, x) + K_{-\nu}(z, x) = K_{\nu}(z).
\]

Hence, \(K_{\nu}(z, x) \leq K_{\nu}(z) (\nu \geq 0)\).
Lemma 8. Let
\[Q_\nu(z,x) = \frac{x^{\nu+1}}{z(x^2 - 1)} \exp\{-z(x + 1)/2\}. \]
If \(z > 0 \) and \(x > 1 \), then
\[K_1(z,x) < Q_1(z,x) \]
and
\[K_2(z,x) < (x + 2/z)Q_1(z,x). \]

The term \(\tilde{A}_H \) can be expressed using incomplete Bessel functions.

Lemma 9. Let \(X \) be defined by (6). Let \(z_m = 2X\sqrt{m} = 2\sqrt{\frac{m\ln x}{R}} \) and \(U_m = \frac{2m}{z_m} \ln \left(\frac{kH}{C_1(k)} \right)^{m+1} \)
\[\tilde{A}_H = \frac{2 \ln x}{\pi Rm} \left(\frac{k}{C_1(k)} \right)^m \left(\frac{k}{C_1(k)} \right)^m \exp \left(\frac{z_m + 1}{2} - \frac{t}{2} \right) \]
and
\[K_m(z_m, U_m) \]
\[K_{m+1}(z_m, U_{m+1}) \]

Proof. This is by straightforward algebraic manipulation; for example, we write
\[I = \int_H^\infty \frac{C_2}{y^{m+1}} \exp \left(-\frac{\ln x}{R\ln(ky/C_1(k))} \right) dy. \]
Changing variables:
\[t = \sqrt{\frac{R(m+1)}{\ln x}} \ln \left(\frac{ky}{C_1(k)} \right), \]
\[dt = \sqrt{\frac{R(m+1)}{\ln x}} \frac{dy}{y}. \]
Now
\[\exp \left(-\frac{\ln x}{R\ln(ky/C_1(k))} \right) = \exp \left(-\frac{\ln x}{R t/\sqrt{\frac{(m+1)\ln x}{R}}} \right) = \exp \left(\frac{-z_{m+1} + 1}{2} \right) \]
and
\[\frac{1}{y^{m+1}} = \left(\frac{k}{C_1(k)} \right)^{m+1} \exp \left(-\frac{(m+1)t}{R(m+1)/\ln x} \right) = \left(\frac{k}{C_1(k)} \right)^{m+1} \exp \left(-\frac{z_{m+1}}{2} \right) \]
Consequently,
\[I = \int_{U_{m+1}}^{\infty} C_2 \sqrt{\frac{\ln x}{R(m+1)}} \left(\frac{k}{C_1(k)} \right)^{m+1} \exp \left(\frac{-z_{m+1}}{2}(t + 1/t) \right). \]
2.6. Study of $f(k)$ which appears in the expression of \tilde{R}. Remember that
$f(k) = \sum_{p \mid k} \frac{1}{p}$.

Lemma 10. For an integer $k \geq 1$,

$$f(k) \leq \frac{\ln k}{\ln 2}.$$

Proof. We prove by recursion that

$$f(k) \leq \frac{\ln k}{\ln 2}.$$

For $k = 1$, it is obvious. For $k = 2$, $f(k) = 1 \leq \frac{\ln 2}{\ln 2}$. Assume $f(k) \leq \frac{\ln k}{\ln 2}$ holds for $k \leq n$. Find an upper bound for $f(n+1)$. If $(n+1)$ is prime, then $f(n+1) = 1/n \leq \ln n/\ln 2$. If $(n+1)$ is not prime, then there exists $p \leq n$, which divides n. If $p = 2$ and $2^\alpha \parallel n+1$,

$$f(n+1) = f\left(\frac{n+1}{2^\alpha} \cdot 2^\alpha\right) = f\left(\frac{n+1}{2^\alpha}\right) + f(2)$$

$$= 1 + f\left(\frac{n+1}{2^\alpha}\right) \leq \frac{\ln(n+1)}{\ln 2} + 1 - \frac{\ln 2}{\ln 2}$$

$$\leq \frac{\ln(n+1)}{\ln 2}.$$

If $p > 2$ and $p^\alpha \parallel n+1$,

$$f(n+1) = f\left(\frac{n+1}{p^\alpha} \cdot p^\alpha\right) = f\left(\frac{n+1}{p^\alpha}\right) + f(p)$$

$$= \frac{1}{p-1} + f\left(\frac{n+1}{p^\alpha}\right) \leq \frac{\ln(n+1)}{\ln 2} + 1 - \frac{\ln p}{\ln 2}$$

$$\leq \frac{\ln(n+1)}{\ln 2} \text{ because } \frac{1}{p-1} - \frac{\ln p}{\ln 2} < 0 \text{ for } p > 2.$$

\[
\]

3. The method with $m = 1$

Theorem 4. Let k be an integer, $H \geq 1250$, and $H \geq k$. Assume GRH(k, H). Let $C_1(k)$ defined by (3). Let $x > 1$. Write $X = \sqrt{\frac{\ln x}{H}}$ and

$$\varepsilon(x) = 2\sqrt{\frac{k \varphi(k)}{C_1(k) \sqrt{x}} \left(1 + \frac{1}{2x} (15/16 + \ln(C_1(k)/(2\pi)))\right) X^{3/4} \exp(-X).$$

If $\varepsilon(x) \leq 0.2$ and $X \geq \sqrt{2} \ln \left(\frac{kH}{\varepsilon_1(k)}\right)$, then

$$\max_{1 \leq y \leq x} |\psi(y; k, 1) - y/\varphi(k)| \leq x \varepsilon(x)/\varphi(k).$$

Proof. Take $m = 1$ in Theorem 3. Assuming $X \geq \sqrt{2} \ln \left(\frac{kH}{C_1(k)}\right)$, then $W_1 \geq H$. In this situation, $Y = W_1$ and $\tilde{B}_H < 2R(W_1)\phi_1(W_1)$. For $y > 1$, $R(y)/\ln y$ is
ESTIMATES OF $\theta(x; k, l)$ FOR LARGE VALUES OF x

decreasing; hence,

$$
\tilde{B}_H < 2R(W_1)\phi_1(W_1) < 2\frac{R(H)}{\ln H}\phi_1(W_1)\ln W_1
= 2\frac{R(H)}{\ln H}\left(\frac{X}{\sqrt{2}} + \ln \left(\frac{C_1(k)}{k}\right)\right)\phi_1(W_1)
= 2\frac{R(H)}{\ln H}\left(\frac{X}{\sqrt{2}} + \ln \left(\frac{C_1(k)}{k}\right)\right)(k/C_1(k))^2 \exp(-2\sqrt{2}X).
$$

Inserting the upper bounds (12) and (13) into the bound for \tilde{A}_H in Lemma 9,

$$
\tilde{A}_H < 2\left(k\frac{C_1(k)}{C_1(k)}\right)\left[\frac{\pi}{4X}\exp(-2X)\left(1 + \frac{15}{16X} + \frac{105}{512X^2}\right)X^2/\pi
+ \frac{1}{2}\ln \frac{C_1(k)}{2\pi}X\frac{\pi}{4X}\exp(-2X)\left(1 + \frac{3}{16X}\right)
+ C_2\frac{kX}{C_1(k)\sqrt{2}}\frac{\pi}{4\sqrt{2}X}\exp(-2\sqrt{2}X)\left(1 + \frac{3}{16X}\right)\right].
$$

Put

$$
F_1 := \frac{1}{\sqrt{\pi}}\frac{k}{C_1(k)}X^{3/2}\exp(-2X)\left[1 + \left(\frac{15}{16} + \ln \frac{C_1(k)}{2\pi}\right)\frac{1}{2X}\right]^2.
$$

In Lemma 11 below it is shown that

$$
\tilde{A}_H + \tilde{B}_H + (\tilde{C}_H + \tilde{D}_H + 3\tilde{E}(H))/\sqrt{x} + \tilde{R}\frac{2}{x\varphi(k)} < F_1.
$$

We must choose δ to minimize

$$
\frac{A(1, \delta)}{2}\varphi(k)F_1 + \delta/2.
$$

Write $f = \varphi(k)F_1$. As $A_1(\delta) = (\delta^2 + 2\delta + 2)/\delta$, we must minimize $g(\delta) = (\delta^2 + 2\delta + 2)/\delta + \delta/2$. The minimum value here is at $\delta = \sqrt{2f(1+f)}$, and the value there is $g(\sqrt{2f(1+f)}) = f + \sqrt{2f(1+f)}$.

It is a simple matter to prove that for $0 < f < 0.202$,

$$
f + \sqrt{2f(1+f)} < 2\sqrt{f}.
$$

As $X > X_0 := \sqrt{2}\ln \left(\frac{kH}{C_1(k)}\right)$, then $x_0 \geq \exp(122.5)$, and it is obvious that δ meets the hypothesis $0 < \delta < (x_0 - 2)/x_0$ in Theorem 3 since

$$
0 < \delta < \sqrt{2}\sqrt{f} < 0.6357 < \frac{x_0}{x_0 - 2}.
$$

Lemma 11.

$$
\tilde{A}_H + \tilde{B}_H + (\tilde{C}_H + \tilde{D}_H + 3\tilde{E}(H))/\sqrt{x} + \tilde{R}\frac{2}{x\varphi(k)} < F_1.
$$
Proof. First we prove that $\tilde{A}_H + \tilde{B}_H < F_1$:

$$F_1 = \frac{k}{C_1(k) \sqrt{\pi}} X^{3/2} e^{-2X} \left(1 + (15/16 + \ln(C_1(k)/2\pi))/X \right.$$

$$\left. + (225/1024 + 15/32 \ln(C_1(k)/2\pi) + 1/4 \ln^2(C_1(k)/2\pi))/X^2 \right),$$

$$\tilde{A}_H < \frac{k}{C_1(k) \sqrt{\pi}} X^{3/2} e^{-2X} \left(1 + \frac{15}{16} X + \frac{105}{512} X^2 + \ln \left(\frac{C_1(k)}{2\pi} \right) \left(\frac{1}{X} + \frac{3}{16X^2} \right) \right.$$

$$\left. + C_2 \frac{k \pi}{C_1(k) \sqrt{2 \pi}} \exp(-2(\sqrt{2} - 1)X)(1/X + 3/(16\sqrt{2}X^2)) \right),$$

$$\tilde{B}_H < \frac{k}{\sqrt{\pi} C_1(k)} X^{3/2} \exp(-2X) \exp(-2(\sqrt{2} - 1)X)$$

$$\times \left[\frac{2k \sqrt{\pi}}{C_1(k) \ln H} (C_2 \ln(kH) + C_3) \left(\frac{1}{\sqrt{2X}} + \frac{1}{X \sqrt{X}} \ln(C_1(k)/k) \right) \right].$$

This yields $F_1 - \tilde{A}_H - \tilde{B}_H > 0$ if

$$F_2 := \frac{1}{X^2} \left(\frac{15}{1024} + \frac{9}{32} \ln \left(\frac{C_1(k)}{2\pi} \right) + \frac{1}{4} \ln^2 \left(\frac{C_1(k)}{2\pi} \right) \right)$$

$$\times \frac{C_2 \sqrt{\pi} k}{C_1(k)} \exp(-2(\sqrt{2} - 1)X) \frac{1}{\sqrt{2X}}$$

$$\times \left[\sqrt{\frac{\pi}{2 \sqrt{2}}} \left(\sqrt{\frac{3}{2X 16X^{3/2}}} \right) \right.$$

$$\left. + 2 \left(1 + \ln k + \frac{C_3/C_2}{\ln H} \right) \left(1 + \frac{\sqrt{2} \ln C_1(k)}{k} \right) \right].$$

This holds if we can show that

$$F_2 > \frac{C_2 k \sqrt{\pi}}{C_1(k)} \exp(-2(\sqrt{2} - 1)X) \frac{1}{\sqrt{2X}} \cdot 16.9,$$

since $C_1(k) \leq 32\pi$, $H \geq 1250$, $X \geq \sqrt{2} \ln(1250/32\pi)$, and $k \leq H$.

It remains to be proved that

$$\frac{\sqrt{2} C_1(k)}{k C_2 \sqrt{\pi} \cdot 16.9} (15/1024 + \cdots) > X^{3/2} \exp(-2(\sqrt{2} - 1)X).$$

But for $X \geq X_0 := \sqrt{2} \ln \left(\frac{kH}{C_1(k)} \right)$,

$$X^{3/2} \exp(-2(\sqrt{2} - 1)X) < X_0^{3/2} \left(\frac{kH}{C_1(k)} \right)^{(1+a)}$$

$$= \frac{1}{k} \cdot 2^{3/4} \left(\frac{C_1(k)}{H} \right)^{1+a} \left(\frac{\ln^{3/2}(kH/C_1(k))}{k^a} \right),$$

where $a = 2\sqrt{2}(\sqrt{2} - 1) - 1 \approx 0.17157$. The map $k \mapsto \frac{\ln^{3/2}(kH/C_1(k))}{k^a}$ reaches its maximum for $k = e^{\frac{1}{2a} C_1(k)/H}$. Hence

$$X^{3/2} \exp(-2(\sqrt{2} - 1)X) < \frac{C_1(k)}{kH} 2^{3/4} \left(\frac{3}{2a} \right)^{3/2} / e^{3/2}.$$
We must compare
\[\frac{\sqrt{2}}{C_2 \sqrt{\pi} \cdot 16.9} \left(15/1024 + \cdots \right) \text{ with } \frac{2^{3/4} (\frac{2}{\pi})^{3/2}}{He^{3/2}}. \]

Since \(C_1(k) \geq 9.14 \) (see the remark above (3)) and \(C_2 = 0.9185 \), it remains to be proved that
\[0.007976 \geq \frac{2^{3/4} (\frac{2}{\pi})^{3/2}}{He^{3/2}} (\approx 0.00776), \]
which is true since \(H \geq 1250 \).

We show below that the remaining terms \((\hat{C}_H + \hat{D}_H + 3\hat{E}(H))/\sqrt{x} + \frac{2R}{\varphi(k)}\) are negligible.

\[\bullet \] We will find an upper bound for \(A(1, \delta) \frac{2}{\varphi(k)}(\hat{C}_H + \hat{D}_H) + \frac{3}{2} \frac{\varphi(k)}{\sqrt{\pi}} \frac{\hat{E}(H)}{\sqrt{x}} + \frac{\hat{R}}{x}. \]

We assume that \(X \geq \sqrt{2} \ln \left(\frac{kH}{C_1(k)} \right) \); hence, \(X \geq X_0 := \sqrt{2} \ln \left(\frac{1250}{32 \pi} \right) \approx 3.5644 \). It is straightforward but tedious to check that

\[\text{Rest} := \hat{C}_H + \hat{D}_H + 3\hat{E}(H) + \frac{2R}{\varphi(k) \sqrt{x}} \leq \begin{cases} 1250(\ln H \ln k)^2 & \text{if } k \neq 1, \\
1250(\ln H)^2 & \text{if } k = 1. \end{cases} \]

Let us consider the case \(k \neq 1 \). As \(X \geq \sqrt{2} \ln \left(\frac{kH}{C_1(k)} \right) \),
\[\exp \left(\frac{X}{\sqrt{2}} \right) \geq \frac{kH}{C_1(k)}. \]

This yields
\[\text{Rest} \leq 1250(\ln H \ln k)^2 \leq 1250 \left(\frac{\ln H \ln k}{C_1(k)} \right)^2 \exp(X \sqrt{2}) \]
\[\leq 1250C_1^2(k) \frac{1}{e^2} \left(\frac{\ln 1250}{1250} \right)^2 \exp(X \sqrt{2}) \]
\[\leq K \exp(X \sqrt{2}) \text{ because } C_1(k) \leq 32\pi, \]
where \(K := 55.65 \). Now compare
\[\frac{K \exp(X \sqrt{2})}{\sqrt{x}} = K \exp(X \sqrt{2} - RX^2/2) \]
with the term involving \(1/X^2 \) in \(F_1 \)
\[\frac{1}{X^2} \times \frac{k}{C_1(k) \sqrt{\pi}} X^{3/2} \exp(-2X). \]

We may compute \(c \) such that
\[K \exp(X \sqrt{2} - RX^2/2) \leq c \times \frac{1}{X^2} \times \frac{k}{C_1(k) \sqrt{\pi}} X^{3/2} \exp(-2X) \]
\[\Leftrightarrow c \geq K \times 32\pi \sqrt{\pi} \exp(X \sqrt{2} - RX^2/2 + 2X) \times \frac{X^2}{X^{3/2}} \]
\[\Leftrightarrow c \geq 0.7 \cdot 10^{-18} \text{ for } X \geq X_0. \]

Thus, the rest is negligible and absorbed by rounding up the constants. \(\square \)
4. The method with \(m = 2 \)

Lemma 12. Let \(A(m, \delta) \) be defined as in formula (4). Write \(R_m(\delta) = (1 + (1 + \delta)^{m+1})^m \).

Then \(A(m, \delta) \leq \frac{R_m(\delta)}{\delta^m} \).

Proof. The proof appears in [4, p. 222].

Theorem 5. Let an integer \(k \geq 1 \). Remember that \(R = 9.645908801 \). Assume GRH \((k, H)\). Let \(C_1(k) \) be defined by (3). Let \(X_0, X_1, X_2, \) and \(X_3 \) be such that

\[
\begin{align*}
\frac{e^{X_0}}{\sqrt{X_0}} &= H \sqrt{\frac{k\varphi(k)}{2\pi C_1(k)}}, \\
\frac{e^{X_1}}{C_1(k)\varphi(k)} &= 10\varphi(k), \\
X_2 &= kC_1(k)/(2\pi\varphi(k)), \\
X_3 &= \frac{2k\pi e}{C_1(k)\varphi(k)}.
\end{align*}
\]

Let \(X_4 := \max(10, X_0, X_1, X_2, X_3) \). Write

\[
\varepsilon(X) = 3\sqrt{\frac{k}{\varphi(k)C_1(k)}}X^{1/2}\exp(-X).
\]

Then for all real \(x \) such that \(X = \sqrt{\frac{\ln x}{R}} \geq X_4 \), we have

\[
\begin{align*}
\max_{1 \leq y \leq x} |\psi(y; k, l) - y/\varphi(k)| &< x\varepsilon \left(\frac{\ln x}{\sqrt{R}} \right), \\
\max_{1 \leq y \leq x} |\theta(y; k, l) - y/\varphi(k)| &< x\varepsilon \left(\frac{\ln x}{\sqrt{R}} \right).
\end{align*}
\]

Corollary 2. With the notations and the hypothesis of Theorem 5 let \(X_5 \geq X_4 \) and \(c := \varepsilon(X_5) \). For \(x \geq \exp(RX_5^2) \), we have

\[
|\psi(x; k, l) - x/\varphi(k)|, \quad |\theta(x; k, l) - x/\varphi(k)| < cx.
\]

Proof. The idea is to judiciously split the integral into two parts, and bound each part optimally, using an \(m = 0 \) estimate in the first part and an \(m = 2 \) estimate in the second part.

We want to split the integral at \(T \), where \(T \) will optimally be chosen later. We take \(T \) in the same form as \(W_m \) (formula (11)):

\[
T := \frac{C_1(k)}{k} \exp(\nu X),
\]

where \(\nu \) is a parameter.

Assume that \(T \geq H \) and \(1/\sqrt{m+1} \leq \nu \leq 1 \). Hence \(W_m \leq T \leq W_0 \). This last hypothesis is needed to apply Corollary [1].

We use Theorem [2] and split the sums at \(T \):

\[
A(m, \delta) \sum_{\chi} \sum_{\rho \in \chi(k)} \frac{x^{\beta-1}}{|\rho|^{(p+1)\cdots(p+m)}} + \left(1 + \frac{m\delta}{2} \right) \sum_{\chi} \sum_{\rho \in \chi(k)} \frac{x^{\beta-1}}{|\rho|} + \frac{m\delta}{2} + \frac{\tilde{R}}{x}.
\]
Define

\[\hat{A}_1 := \sum_{\chi} \sum_{\rho \in \rho(y)} \frac{x^{\beta - 1}}{|\rho|}, \]

\[\hat{A}_2 := \sum_{\chi} \sum_{\rho \in \rho(y), |\gamma| > T} \frac{x^{\beta - 1}}{|\rho(\rho + 1) \cdots (\rho + m)|}. \]

Bounding the term \(\hat{A}_1 \), we get

\[
\hat{A}_1 = \sum_{\chi} \left(\sum_{\rho \in \rho(y) \gamma \leq H} \frac{x^{\beta - 1}}{|\rho|} + \sum_{\rho \in \rho(y), H < \gamma \leq T} \frac{x^{\beta - 1}}{|\rho|} \right)
= \frac{1}{x} \sum_{\chi} \left(\sum_{\rho \in \rho(y) \gamma \leq H} \sqrt{x} \frac{x^{\beta}}{|\rho|} + \sum_{\rho \in \rho(y), H < \gamma \leq T} \frac{x^{\beta}}{|\rho|} \right) \text{ by GRH}(k, H)
= \frac{1}{\sqrt{x}} \sum_{\chi} \sum_{\rho \in \rho(y) \gamma \leq H} \frac{1}{|\rho|} + \frac{1}{2x} \sum_{\chi} \left(\sum_{\rho \in \rho(y), H < \gamma \leq T} x\phi_0(\gamma) + \sqrt{x} \sum_{\rho \in \rho(y), H < \gamma \leq T} \frac{1}{|\gamma|} \right)
\leq \frac{1}{\sqrt{x}} \varphi(k) E(H) + \frac{1}{2 \sqrt{x}} \sum_{\chi} \left(\sum_{\rho \in \rho(y), H < \gamma \leq T} x\phi_0(\gamma) + \sqrt{x} \sum_{\rho \in \rho(y), H < \gamma \leq T} \frac{1}{|\gamma|} \right)
\]

by Lemmas 3 and 4

\[\leq \varphi(k) E(T) / \sqrt{x} + \frac{1}{2} \sum_{\chi} \sum_{\rho \in \rho(y), H < \gamma \leq T} \phi_0(\gamma). \]

Apply Corollary 1 (\(j = 1, m = 0 \)) for the interval \([H, T]\) with \(\phi = \phi_0 \) and \(W = W_0 \)

\[\sum_{\rho \in \rho(y) H < \gamma \leq T} \phi_0(\gamma) = \{1/\pi - q(T)\} \int_H^T \phi_0(y) \ln (ky/2\pi) dy + B_1(T, H, T). \]

Moreover, \(B_1(T, H, T) < 2R(T)\phi_0(T) \).

We want to find an upper bound for

\[I_1 := \frac{1}{\pi} \int_H^T \phi_0(y) \ln \left(\frac{ky}{2\pi} \right) dy. \]

Write \(V'' = X^2 / \ln \left(\frac{kT}{C_1(k)} \right) = X/\nu = Y'' + 2Y - \nu X \), where \(Y'' := X(1 - \nu)^2 / \nu \).

Write \(U'' = X^2 / \ln \left(\frac{kH}{C_1(k)} \right) \) and \(\Gamma(\alpha, x) = \int_x^\infty e^{-u} u^{\alpha - 1} du \). Now

\[\int_H^T \ln \left(\frac{ky}{2\pi} \right) \phi_0(y) dy = \int_H^T \ln \left(\frac{ky}{2\pi} \right) \exp \left(-X^2 / \ln \left(\frac{ky}{C_1(k)} \right) \right) dy \]

\[= X^4 \{ \Gamma(-2, V'') - \Gamma(-2, U'') \}
+ X^2 \ln \left(\frac{C_1(k)}{2\pi} \right) \{ \Gamma(-1, V'') - \Gamma(-1, U'') \} \]
by making the change of variables \(y = \frac{C_1(k)}{k} \exp(X^2/u) \). Now if \(\alpha \leq 1 \) and \(x > 0 \), then \(\Gamma(\alpha, x) \leq x^{\alpha-1} \int_x^{\infty} e^{-t} dt = x^{\alpha-1} e^{-x} \). Hence,

\[
\int_T^H \ln \left(\frac{ky}{2\pi} \right) \phi_0(y) dy \leq X^4 V''^3 e^{-V''} + X^2 \ln \left(\frac{C_1(k)}{2\pi} \right) V'' - 2 e^{-V''}.
\]

This yields

\[
I_1 \leq \frac{1}{\pi} X^2 \left(X^2 V''^3 + \ln \left(\frac{C_1(k)}{2\pi} \right) V'' - 2 \right) e^{-V''}
\]

\[
= \frac{1}{\pi} e^{-V''} e^{-2X} \left(\frac{kT}{C_1(k)} \right) \left(\frac{X^4}{(X/\nu)^3} + \frac{dX^2}{(X/\nu)^2} \right)
\]

\[
= \frac{1}{\pi} e^{-V''} e^{-2X} \left(\frac{kT}{C_1(k)} \right) XG_0,
\]

where \(d := \ln \left(\frac{C_1(k)}{2\pi} \right) \) and \(G_0 := \nu^2 (\nu + d/X) \). With the help of Corollary 1, we write

\[
\tilde{A}_1 \leq \varphi(k) \tilde{E}(T)/\sqrt{X} + \varphi(k) \left\{ \frac{1}{\pi} e^{-V''} e^{-2X} \left(\frac{kT}{C_1(k)} \right) XG_0 + 2R(T)\phi_0(T) \right\}.
\]

Bounding the term \(\tilde{A}_2 \), we get

\[
\tilde{A}_2 = \frac{1}{x} \sum \sum r \in \mathbb{P}(\chi) |\rho(r + 1) \cdots (r + m)|
\]

\[
= \frac{1}{2x} \sum \sum r \in \mathbb{P}(\chi) \left(\frac{x^\beta}{|\gamma|^{m+1}} + \frac{x^\beta}{|\gamma|^{m+1}} \right)
\]

by Lemma 4.

By using Corollary 1 (\(j = 0 \)) on \([U, V] = [T, \infty)\),

\[
\sum_{r \in \mathbb{P}(\chi) \ |\gamma| > T} \phi_m(\gamma) \leq \{1/\pi + q(T)\} \int_T^{\infty} \phi_m(y) \ln \left(\frac{ky}{2\pi} \right) dy + B_0(T, T, \infty).
\]

We have

\[
B_0(T, T, \infty) < 2R(T)\phi_m(T).
\]

Moreover,

\[
\sum_{r \in \mathbb{P}(\chi) \ |\gamma| > T} \frac{1}{|\gamma|^{m+1}} \leq \tilde{C} + \tilde{D}.
\]
Let us study more precisely

\[I_2 := \int_T^\infty \phi_m(y) \ln \left(\frac{ky}{2\pi} \right) dy \]

\[= \frac{\zeta}{2m^2} \left(\frac{k}{C_1(k)} \right)^m \left(K_2(z_m, U_m) + \frac{2md}{z_m} K_1(z_m, U_m) \right), \]

where \(d = \ln \left(\frac{G(x)}{2\sqrt{3}} \right) \) and \(U' := U_m = \frac{2m}{z_m} \ln \left(\frac{kT}{C_1(k)} \right) = \nu \sqrt{m}. \) Now, by writing \(z = z_m \) and using Lemma 8,

\[K_2(z, U') + \frac{2dm}{z} K_1(z, U') < (U' + 2z + 2dm/z)Q_1(z, U') \]

\[\leq \sqrt{m} \left(\nu + \frac{1+dm}{mX} \right) \frac{U'^2}{z(U'^2-1)} e^{-\nu(U'+1/U')} \]

But \(\frac{1}{\nu}(U' + 1/U') = X \sqrt{m(\nu \sqrt{m} + 1/(\nu \sqrt{m}))} = mX + X/\nu = mX + (Y'' + 2X - \nu X), \) where \(Y'' = X(1-\nu)^2/\nu. \) Hence

\[K_2(z, U') + \frac{2dm}{z} K_1(z, U') = G_1 e^{Y''} \frac{m}{2(m-1)} X^{-1} e^{-2X} \left(\frac{kT}{C_1(k)} \right)^{-(m-1)}, \]

where \(G_1 := \frac{m-1}{m} \frac{U'^2}{U'-1} \left(\nu + \frac{1+dm}{mX} \right) \) because

\[e^{\nu X(m-1)} = \left(\frac{kT}{C_1(k)} \right)^{m-1} \]

and \(\frac{1}{\nu} = \frac{1}{2}X^{-1}. \) This yields

\[I_2 = \int_T^\infty \phi_m(y) \ln(ky/2\pi) dy < \frac{G_1 e^{Y''}}{m-1} \frac{k}{C_1(k)} X e^{-2X T^{-(m-1)}} \]

Let \(G_2 := \frac{R_m(\delta)}{2\delta}(1 + \pi q(T)). \) So, by using Lemma 12,

\[A(m, \delta) \frac{\varphi(k)}{2} \left(1/\pi + q(T) \right) \int_T^\infty \phi_m(y) \ln(ky/2\pi) dy \]

\[< \left(\frac{2}{\nu} \right)^{m-1} \frac{\varphi(k)}{2} \left(\frac{G_2}{\pi (m-1) C_1(k)} X e^{-2X T^{-(m-1)}} \right). \]

The results above yield

\[(1 + m\delta/2)\tilde{A}_1 + A(m, \delta)\tilde{A}_2 \]

(15) \[< \frac{XG_2 e^{-2X} e^{-Y''} \varphi(k)}{2\pi} \left(\frac{k}{C_1(k)} \right) \left(\frac{G_1}{m-1} T^{-(m-1)} \left(\frac{2}{\nu} \right)^m + G_0 T \right) \]

because \(1 + m\delta/2 < R_m(\delta)/2 < G_2, \) with

\[r = \varphi(k)(1 + m\delta/2)R(T)\phi_0(T) + A(m, \delta)\varphi(k)R(T)\phi_m(T) \]

\[+ \frac{\varphi(k)}{\sqrt{x}} ((1 + m\delta/2)\tilde{E}(T) + A(m, \delta)(\tilde{C}_T + \tilde{D}_T)/2). \]

Suppose \(G_0/G_1 \) were independent of \(\nu; \) then the expression between braces in (15) would be minimized for

\[T = (G_1/G_0)^{1/m} \cdot \frac{2}{\delta}. \]
With this choice,
\[\frac{G_1}{m-1} T^{-(m-1)} \left(\frac{2}{\delta} \right)^m + G_0 T = \frac{m}{m-1} G_1^{1/m} G_0^{1-1/m} \frac{2}{\delta} \]
and we obtain \((G_2 > 1)\)
\[\varepsilon_1 := (1 + m\delta/2) \bar{A}_1 + A(m, \delta) \bar{A}_2 + \frac{1}{2} m\delta + \frac{\bar{R}}{x} \]
\[< \frac{1}{2} m G_2 \left\{ X e^{-2X} e^{-Y''} \frac{2k\varphi(k)}{(m-1)\pi C_1(k)} G_1^{1/m} G_0^{1-1/m} + \delta \right\} + r + \frac{\bar{R}}{x} . \]
The expression between braces can be minimized by choosing
\[\delta = \left\{ G_0^{1-1/m} G_1^{1/m} e^{-Y''} \frac{2k\varphi(k)}{(m-1)\pi C_1(k)} \right\}^{1/2} X^{1/2} e^{-X} . \]
Hence, we write (by replacing the above value of \(\delta\) in \(16\))
\[T = \left(\frac{G_1}{G_0} \right)^{1/2m} \left(\frac{2C_1(k)}{k\varphi(k)} \right)^{1/2} X^{-1/2} e^X \]
and
\[\varepsilon_1 < G_2 \left(G_0^{1-1/m} G_1^{1/m} e^{-Y''} \frac{2k\varphi(k)}{\pi C_1(k)} \right)^{1/2} \frac{m}{\sqrt{m-1}} X^{1/2} e^{-X} + r + \frac{\bar{R}}{x} . \]
The value \(m = 2\) minimizes the expression \(\frac{m}{\sqrt{m-1}}\). For the remainder of the argument, we fix \(m = 2\).

We now have two definitions for \(T\). On the one hand (equation \(18\)),
\[T = \left(\frac{G_1}{G_0} \right)^{1/4} e^{Y''/2} \sqrt{\frac{2\pi C_1(k)}{k\varphi(k)}} X^{-1/2} e^X \]
with \(Y'' = X(1-\nu)^2/\nu\), and on the other hand (equation \(14\))
\[T = \frac{C_1(k)}{k} \exp(\nu X) . \]
These two equations are compatible if and only if there exists \(\nu\) such that \(f(\nu) = 1\),
where
\[f(\nu) = \frac{C_1(k)\varphi(k)}{2\pi k} \left(\frac{G_0^3}{G_1^2} \right)^{1/2} X e^{-X(1-\nu^2)/\nu} e^{-2X(1-\nu)} . \]
Here we have \(m = 2\) and our assumption \(1/\sqrt{m+1} \leq \nu \leq 1\) gives \(1/\sqrt{3} \leq \nu \leq 1\). Note that
\[G_0 = \nu^2(\nu + d/X) , \]
\[G_1 = \frac{m-1}{m} \frac{U''}{U'^2-1} \left(\nu + \frac{1+dm}{mX} \right) = \frac{\nu^2}{2\nu^2-1} \left(\nu + \frac{1+2d}{2X} \right) . \]
It is easy to check that on the interval \(1/\sqrt{3} \leq \nu \leq 1\), \(G_0^3/G_1\) is increasing, and hence, \(f(\nu)\) is strictly increasing. Moreover, \(\lim_{\nu \to (1/\sqrt{3})^+} f(\nu) = 0\) and \(f(1) > 1\)
(for all \(X \geq \frac{2\pi k}{C_1(k)\varphi(k)} \)). So there exists a unique \(\nu \in [1/\sqrt{2}, 1] \) such that \(f(\nu) = 1 \).

For \(1/\sqrt{2} < \nu < 1 \), we have \((m = 2)\)

\[
H(\nu) := \frac{G_0^3}{G_1} = \frac{[\nu^2(\nu + d/X)]^3}{\nu^2(\nu + 1 + 2dX)} < (\nu + d/X)^3.
\]

Write, for \(X \geq X_3 := \frac{2\pi k}{C_1(k)\varphi(k)} \),

\[
(20) \quad \nu_0 = 1 - \frac{1}{2X} \ln \left(\frac{C_1(k)\varphi(k)X}{2\pi k} \right).
\]

Let us study \(H(\nu_0) \):

\[
H(\nu_0) < 1 \quad \text{if} \quad \nu_0 + d/X \leq 1,
\]

equivalently

\[
1 - \frac{1}{2X} \ln \left(\frac{C_1(k)\varphi(k)X}{2\pi k} \right) + \ln \left(\frac{C_1(k)/2\pi}{X} \right) \leq 1,
\]

which holds if

\[
X \geq X_2 := \frac{kC_1(k)}{2\pi\varphi(k)}.
\]

As

\[
f(\nu) = \frac{C_1(k)\varphi(k)}{2\pi k} \left(\frac{G_0^3}{G_1} \right)^{1/2} X \exp(-X(1-\nu)^2/\nu) \exp(-2X(1-\nu)),
\]

replacing \(\nu_0 \) by \((20)\), we obtain

\[
f(\nu_0) = \left(\frac{G_0^3}{G_1} \right)^{1/2} \exp \left(-\ln^2 \left(\frac{C_1(k)\varphi(k)X}{2\pi k} \right) / (4\nu_0 X) \right).
\]

Assume that \(\nu_0 > 0 \), then, for \(X \geq X_2 \), \(f(\nu_0) < 1 = f(\nu) \) and hence \(\nu_0 < \nu \). We will require \(X \geq X_2 \).

The assumption \(T \geq H \) holds if \(T \geq \frac{C_1(k)}{k} \exp(\nu_0 X) \geq H \). Using \((20)\), rewrite

\[
\frac{C_1(k)}{k} \exp(\nu_0 X) = \sqrt{\frac{2\pi C_1(k)}{k\varphi(k)}} e^{-\frac{1}{2}\ln X}. \quad \text{Let } X_0 \text{ satisfy}
\]

\[
e^{X_0 - \frac{1}{2}\ln X_0} = H \sqrt{\frac{k\varphi(k)}{2\pi C_1(k)}}.
\]

We have \(T \geq H \) provided that \(X \geq X_0 \). We will require \(X \geq X_0 \).

For \(X \geq X_3 := \frac{2\pi k}{C_1(k)\varphi(k)} \), \(\nu_0 \) is an increasing function of \(X \). We will require that \(X \geq \max(X_3, 10) \). Then since \(C_1(k) \leq 32\pi \) and \(X \geq 10 \), we have

\[
\nu_0 > 0.7462413 \quad \text{and} \quad \nu_0 < \nu < 1.
\]

The assumption \(\nu > 1/\sqrt{2} \) is satisfied.

We want to evaluate

\[
(21) \quad K := G_2(\sqrt{G_0G_1} e^{-Y''})^{1/2},
\]

which appears in \((19)\). Again using \(C_1(k) \leq 32\pi \) and \(X \geq 10 \), we find

\[
G_0G_1 < \left(1 + d/X \right) \frac{\nu_0}{2\nu_0^2 - 1} \left(\nu_0 + \frac{1 + 2d}{2X} \right) < 8.995.
\]

The following results will be needed in later computations.
1. Since \(X \geq X_0 \) and \(\exp(X)/\sqrt{X} \) is increasing for \(X \geq 1/2 \),
\[
\sqrt{\frac{k\varphi(k)}{2\pi C_1(k)}}X^{1/2}\exp(-X) \leq \frac{1}{H}.
\]
2. Since \(G_0G_1 < 9 \),
\[
\delta = 2\sqrt{G_0G_1}\exp(-Y''/2)\sqrt{\frac{k\varphi(k)}{2\pi C_1(k)}}X^{1/2}e^{-X}
\leq 2\sqrt{3}/H.
\]
In particular, for \(H \geq 1000 \), we have \(\delta \leq 0.00347 \).
3. \(G_2 = \frac{R_2(\delta)}{2^2}(1 + \pi q(T)) < (1 + 3.012 \cdot \delta/2)^2(1 + \pi q(T)) \),

because
\[
\frac{R_2(\delta)}{2^2} = \left\{ \frac{(1 + \delta)^3 + 1}{2} \right\}^2
= \left\{ 1 + \frac{1}{2}\delta(3 + 3\delta + \delta^2) \right\}^2 < \left(1 + \frac{3.012}{2} \delta \right)^2
\]
since \(1 + \delta + \delta^2/3 < 1.0035 \).
4. Since \(T \geq H \),
\[
q(T) = \frac{C_2}{T \ln(kT/2\pi)}
\leq \frac{C_2}{H \ln(kH/2\pi)}.
\]
But \(\exp(-Y''/2) \leq 1 \) and \(H \geq 1000 \), so this yields
\[
\begin{align*}
K &< (8.995)^{1/4}G_2 \\
&< (8.995)^{1/4} \left(1 + \frac{\pi C_2}{1000 \ln(1000/(2\pi))} \right) \times \left(1 + \frac{3.012 \cdot 2\sqrt{3}}{2 \cdot 1000} \right)^2 \\
&< 1.751.
\end{align*}
\]
Inserting this upper bound of \(K \) (see formula (21) in [19]), we obtain
\[
\varepsilon_1 < 2\sqrt{\frac{2}{\pi}}K \sqrt{\frac{k\varphi(k)}{C_1(k)}}X^{1/2}\exp(-X) + r + \frac{\tilde{R}}{x}
\leq 2.7941 \sqrt{\frac{k\varphi(k)}{C_1(k)}}X^{1/2}\exp(-X) + r + \frac{\tilde{R}}{x}.
\]
(22)

Now we want to bound \(r \) and \(\tilde{R} \).
• An upper bound for \(\varphi(k)(1 + \delta)R(T)\phi_0(T) \) and \(\varphi(k)A(2, \delta)R(T)\phi_2(T) \). Recall that
\[
\begin{align*}
R(T) &= C_2 \ln(kT) + C_3, \\
\phi_0(T) &= \frac{1}{T} \exp\left(-X^2/\ln(kT/C_1(k)) \right), \\
\phi_m(T) &= \phi_0(T)T^{-m}.
\end{align*}
\]
Now
\[\phi_0(T) = \frac{1}{T} \exp(-X^2/(\nu X)) = \frac{1}{T} \exp(-\frac{1}{\nu} X) \leq \frac{1}{T} \exp(-X) \]
and
\[\frac{1}{T} = X^{1/2} \exp(-X) \sqrt{\frac{k\varphi(k)}{C_1(k)}} \left(\frac{G_0}{2\pi e^X} \right)^{1/2} \left(\frac{G_0}{G_1} \right)^{1/4}, \]
hence
\[R(T)\phi_0(T) \leq \frac{C_2 \ln(kT) + C_3}{T} \exp(-X) \]
\[\leq \sqrt{X} e^{-X} \sqrt{\frac{k\varphi(k)}{C_1(k)}} \left(C_2 \ln(kT) + C_3 \right) \left(\frac{G_0}{2\pi e^X} \right)^{1/2} \left(\frac{G_0}{G_1} \right)^{1/4}, \]
But
\[G_0 \leq 1 + \frac{\ln(C_1(k)/2\pi)}{X}, \]
\[\frac{G_0}{G_1} \leq 2\nu^2 - 1 < 1 \quad (m = 2), \]
\[\exp(Y''') \geq 1, \]
\[\ln(kT) = \nu X + \ln(C_1(k)) \leq X + \ln(C_1(k)) \leq X + \ln(32\pi). \]
So, since \(X \geq 10 \) and \(C_1(k) \leq 32\pi, \)
\[(1 + \delta)\varphi(k) \left(C_2 \ln(kT) + C_3 \right) \left(\frac{G_0}{2\pi e^X} \right)^{1/2} \left(\frac{G_0}{G_1} \right)^{1/4} \exp(-X) \]
\[\leq \varphi(k) \left(1 + \frac{2\sqrt{3}}{1000} \right) \left[C_2(X + \ln 32\pi) + C_3 \right] \sqrt{\frac{1 + \ln 16/10}{2\pi}} \exp(-X) \]
\[\leq 0.857\varphi(k) X \exp(-X). \]
Furthermore, if \(X_1 \) is defined by \(\exp(X_1)/X_1 = 10\varphi(k), \) and if we require that \(X \geq X_1, \) then this term is bounded by 0.0857. Hence, under the hypotheses on \(X \) in Theorem 5 an upper bound for \(\varphi(k)(1 + \delta)R(T)\phi_0(T) \) is
\[0.09 \sqrt{\frac{k\varphi(k)}{C_1(k)}} X^{1/2} \exp(-X). \]
Next, by (10)
\[\delta T = 2 \sqrt{\frac{G_1}{G_0}}. \]
Hence, by Lemma 12
\[A(2, \delta)/T^2 \leq \frac{R_2(\delta)}{(\delta T)^2} \leq \frac{R_2(\delta) G_0}{2^2 G_1} \leq \frac{R_2(\delta)}{2^2} \]
and
\[\varphi(k)A(2, \delta)R(T)\phi_2(T) \leq \varphi(k) \frac{R_2(\delta)}{2^2} R(T)\phi_0(T). \]
Using $\delta \leq 2\sqrt{3}/H \leq 2\sqrt{3}/1000$, we get \(R_2(\delta)/2^2 \leq 1.0147 \). Under the hypotheses on \(X \) in Theorem 5, an upper bound for \(\varphi(k)A(2, \delta)R(T)\phi_2(T) \) is therefore

\[
0.087 \cdot \frac{k\varphi(k)}{C_1(k)} X^{1/2} \exp(-X).
\]

The sum of the two terms can be bounded by

\[
0.2 \cdot \sqrt{\frac{k\varphi(k)}{C_1(k)} X^{1/2} \exp(-X)}.
\]

- An upper bound for \((1 + \delta)\tilde{E}(T)\frac{\varphi(k)}{\sqrt{X}} + A(2, \delta)\frac{\varphi(k)}{2\sqrt{X}}(\tilde{C}_T + \tilde{D}_T) + \tilde{R}/x\).

For \(f(k) = \sum_{p \mid k} \frac{1}{p-1} \) observe that (Lemma 10)

\[
f(k) \leq \frac{\ln k}{\ln 2}.
\]

We can explicitly rewrite for \(m = 2, H \geq 1000, \) and \(C_1(k) \leq 32\pi \) the following expressions:

\[
3\tilde{E}(T) = 3 \left(\frac{1}{2\pi} \ln^2 T + \frac{1}{\pi} \ln \left(\frac{k}{2\pi} \right) \ln T + C_2 \right.
\]
\[
+ \left. 2 \left(\frac{1}{\pi} \ln \left(\frac{k}{2\pi e} \right) + C_2 \ln k + C_3 \right) \right),
\]

\[
\tilde{C}_T = \frac{1}{2\pi T^2} \left(\ln \left(\frac{kT}{2\pi} \right) + 1/2 \right),
\]

\[
\tilde{D}_T = (2C_2 \ln(kT) + 2C_3 + C_2/3)/T^3,
\]

\[
\frac{\tilde{R}}{\varphi(k)\sqrt{X}} \leq |(f(k) + 0.5) \ln x + 4 \ln k + 13.4|/\sqrt{x}.
\]

It is tedious but easy to check that the sum of the above quantities is less than

\[
\begin{cases}
1000(\ln T \sqrt{\ln k})^2 & \text{for } k \neq 1, \\
1000 \ln^2 T & \text{for } k = 1.
\end{cases}
\]

Now we want to find a number \(c \) such that

\[
A(2, \delta)\varphi(k)\frac{1000(\ln T \sqrt{\ln k})^2}{\sqrt{x}} \leq c \left(\frac{k\varphi(k)}{C_1(k)} \right)^{1/2} X^{1/2} \exp(-X)
\]

with \(X = \sqrt{\ln \frac{x}{k}} \). But \(A(2, \delta) \leq \frac{R_2(\delta)}{2^2} \) and by (10), \(T = \left(\frac{G_0}{G_1} \right)^{1/2} \frac{2}{\pi} \), so

\[
A(2, \delta) \leq \frac{R_2(\delta)}{2^2} T^2 G_0 \frac{G_0}{G_1}.
\]

Moreover, \(\frac{1}{\sqrt{x}} = \exp(-RX^2/2) \), hence

\[
c \geq 1000 \frac{R_2(\delta)}{2^2} \frac{G_0}{G_1} T^2 \varphi(k)(\ln T \sqrt{\ln k})^2 \left(\frac{C_1(k)}{k\varphi(k)} \right)^{1/2} X^{-1/2} \exp(X - RX^2/2).
\]

As \(\frac{G_0}{G_1} < 1 \), \(T^2 = \frac{C_1^2(k)}{k^2} \exp(2\nu X) \leq \frac{C_1^2(k)}{k^2} \exp(2X) \), hence it suffices to take

\[
c \geq 1000 \frac{R_2(\delta)}{2^2} \frac{C_1^2(k)}{k^2} \ln \left(\frac{C_1(k)}{k} + 1 \right) X^2 \left(\frac{C_1(k)}{kX} \right)^{1/2} \exp(3X - RX^2/2).
\]
Since \(C \) finally, it suces to take

\[\text{This would not have been possible if we had used only the results of [3].} \]

Using \(X \) more precisely, for all \(X \) satisfying the conditions of the theorem,

\[\begin{align*}
| \psi(x; k, l) - x/\varphi(x) | / x & \leq 2.9941 \sqrt{\frac{k}{\varphi(k)C_1(k)}} X^{1/2} \exp(-X). \\
\text{We also wish to allow } \theta \text{ instead of } \psi, \text{ which can be done by recalling Theorem 13 of [5].} \\
0 \leq \psi(x; k, l) - \theta(x; k, l) \leq \psi(x) - \theta(x) & \leq 1.43\sqrt{x} \quad \text{for } x \geq 0. \\
\text{Using } X \geq 10, \text{ we find } 1.43\sqrt{x}/x & \leq d \cdot (k\varphi(k))/C_1(k) X^{1/2} \exp(-X), \text{ where } \\
d = 1.17 \cdot 10^{-204}. \text{ This difference is absorbed by rounding up the constants.}
\end{align*} \]

5. Application for \(k = 3 \)

Now we are able to compute \(x_0 \) and \(c \) such that, for \(x \geq x_0, \)

\[\begin{align*}
| \theta(x; 3, l) - x/2 | & < cx/\ln x. \\
\text{This would not have been possible if we had used only the results of [3].}
\end{align*} \]

According to Theorem [5]

\[\varepsilon(X) = 3 \sqrt{\frac{6}{20.92}} X^{1/2} \exp(-X) \]

for \(k = 3. \)

To determine for which \(X \) this bound is valid, let us solve for the constants \(X_0, X_1, X_2, X_3 \) in Theorem [5]. Noting that \(H_3 = 10000 \) by the table in Theorem [1] we need \(X_0 \) to satisfy

\[\exp(X_0 - \frac{1}{2} \ln X_0) \geq 10000 \sqrt{\frac{6}{2\pi \cdot 20.92}} \approx 2136.51. \]

\(X_0 \approx 8.76 \) works.

Find \(X_1 \) such that

\[\exp(X_1 - \ln X_1) \geq 20. \]

\(X_1 \approx 4.5 \) works.

Compute the two other bounds: \(X_2 \approx 4.99, X_3 \approx 1.22. \) Thus we can take

\(X = \max(10, X_0, X_1, X_2, X_3) = 10 \) in Theorem [5]

• For \(\sqrt{\ln x} \geq 10 \), write \(X = \sqrt{\ln x} \), then

\[\varepsilon(X) \ln x = RX^2 \varepsilon(X). \]

Find the value \(c \) such that

\[\varepsilon(X) < c/\ln(x). \]
For any x such that $\sqrt{\frac{\ln x}{R}} \geq 10$, $c \leq R \cdot 10^2 \varepsilon(10) \leq 0.12$. Hence we have for $x \geq \exp(964.59 \cdots)$,

$$|\theta(x; 3, l) - x/2| \leq 0.12 \frac{x}{\ln x}.$$

We want to extend the above result for $x \leq \exp(964.59 \cdots)$. Olivier Ramaré has kindly computed some additional values supplementing Table 1 in [3]. We have

$$|\theta(x; 3, l) - x/2| < \tilde{c} \cdot x/2$$

with

$$\tilde{c} = 0.0008464421 \text{ for } \ln x \geq 400 \quad (m = 3, \delta = 0.00042325),$$
$$\tilde{c} = 0.0006048271 \text{ for } \ln x \geq 500 \quad (m = 3, \delta = 0.00030250),$$
$$\tilde{c} = 0.0004190635 \text{ for } \ln x \geq 600 \quad (m = 2, \delta = 0.00027950).$$

Hence,

- For $e^{600} \leq x \leq e^{964.59 \cdots}$

 $$c \leq 0.0004190635 \cdot 964.6/\varphi(3) \leq 0.203.$$

- For $e^{400} \leq x \leq e^{600}$

 $$c \leq 0.0008464421 \cdot 600/\varphi(3) \leq 0.254.$$

Using the computations of [3],

- For $10^{100} \leq x \leq e^{400}$

 $$c \leq 0.001310 \cdot 400/\varphi(3) \leq 0.262.$$

- For $10^{30} \leq x \leq 10^{100}$

 $$c \leq 0.001813 \cdot 100 \ln 10/\varphi(3) \leq 0.42/2 \leq 0.21.$$

- For $10^{13} \leq x \leq 10^{30}$

 $$c \leq 0.001951 \cdot 30 \ln 10/\varphi(3) \leq 0.14/2 \leq 0.07.$$

- For $10^{10} \leq x \leq 10^{13}$

 $$c \leq 0.002238 \cdot 13 \ln 10/\varphi(3) \leq 0.067/2 \leq 0.00335.$$

- For $4403 \leq x \leq 10^{10}$

 $$|\theta(x; 3, l) - x/2| < 2.072 \sqrt{x} \quad \text{(Theorem 5.2.1 of Ramaré and Rumely [3])}$$

We choose $c = 0.262$. We check that this bound is also valid for $1531 \leq x \leq 4403$.

Theorem 6. For $x \geq 1531$,

$$|\theta(x; 3, l) - x/2| \leq 0.262 \frac{x}{\ln x}.$$
ESTIMATES OF $\theta(x; k, l)$ FOR LARGE VALUES OF x

6. Results assuming GRH(k, ∞)

Assuming GRH(k, ∞), we obtain more precise results. Under this hypothesis, one can show that function ψ has the following asymptotic behaviour:

Proposition 1 ([8] p. 294). Assume GRH(k, ∞). Then

$$\psi(x; k, l) = \frac{x}{\varphi(k)} + O(\sqrt{x} \ln^2 x).$$

Theorem 7. Let $x \geq 10^{10}$. Let k be a positive integer. Assume GRH(k, ∞).

1) If $k \leq \frac{1}{5} \ln x$, then

$$|\psi(x; k, l) - \frac{x}{\varphi(k)}| \leq 0.085 \sqrt{x} \ln^2 x.$$

2) If $k \leq 432$, then

$$|\psi(x; k, l) - \frac{x}{\varphi(k)}| \leq 0.061 \sqrt{x} \ln^2 x.$$

Proof. Let $x_0 = 10^{10}$. Applying Theorem 2 in the same way as Theorem 3 (assume that $T \geq 1$),

$$\frac{\varphi(k)}{x} |\psi(x; k, l) - \frac{x}{\varphi(k)}|$$

$$\leq A(m, \delta) \sum_{\chi \mod \gamma > T} \frac{x^{-1/2}}{|\gamma| \cdot \rho(\rho+1) \cdots (\rho+m)}$$

$$+ (1 + m \delta/2) \sum_{\chi \mod \gamma \leq T} \frac{x^{-1/2}}{|\gamma|} + m \delta/2 + \tilde{R}/x$$

$$\leq A(m, \delta) \frac{1}{\sqrt{x}} \sum_{\chi \mod \gamma > T} \frac{1}{|\gamma|^{m+1}} + (1 + \frac{m \delta}{2}) \frac{1}{\sqrt{x}} \sum_{\chi \mod \gamma \leq T} \frac{1}{|\gamma|} + \frac{m \delta}{2} + \tilde{R}/x$$

$$\leq A(m, \delta) \frac{\varphi(k)}{\sqrt{x}} (\tilde{C}_T + \tilde{D}_T) + (1 + \frac{m \delta}{2}) \frac{\varphi(k)}{\sqrt{x}} \tilde{E}(T) + \frac{m \delta}{2} + \tilde{R}/x.$$

Take $m = 1$ and let

$$\varepsilon_k(x, T, \delta) := \frac{R_1(\delta)}{\delta} \frac{\varphi(k)}{\sqrt{x}} (\tilde{C}_T + \tilde{D}_T) + \left(1 + \frac{\delta}{2}\right) \frac{\varphi(k)}{\sqrt{x}} \tilde{E}(T) + \frac{\delta}{2} + \tilde{R}/x,$$

where

$$\tilde{C}_T = \frac{1}{\pi T} \left(\ln \left(\frac{kT}{2\pi}\right) + 1\right),$$

$$\tilde{D}_T = \frac{1}{T^2} \left(2C_2 \ln(kT) + 2C_3 + C_2/2\right),$$

$$\tilde{E}(T) = \frac{1}{2\pi} \ln^2 T + \frac{1}{\pi} \ln(k/(2\pi)) \ln T + C_2 + 2 \left(\frac{1}{\pi} \ln \left(\frac{k}{2\pi e}\right) + C_2 \ln k + C_3\right).$$

Choose

$$T = \frac{2R_1(\delta)}{\delta(2+\delta)}$$
to minimize in \((25)\) the preponderant terms involving \(T\). So
\[
\frac{R_1(\delta)}{\delta} (\tilde{C}_T + \tilde{D}_T) = \frac{2(2 + \delta)}{4\pi} \left[\ln \left(\frac{kR_1(\delta)}{\pi\delta(2 + \delta)} \right) + 1 \right.
+ \frac{\pi\delta(2 + \delta)}{2R_1(\delta)} \left(2C_2 \ln \left(\frac{2kR_1(\delta)}{\delta(2 + \delta)} \right) + 2C_3 + \frac{C_2}{2} \right) \left. \right],
\]
\[(1 + \delta/2)\tilde{E}(T) = \frac{2 + \delta}{4\pi} \left[\ln^2 \left(\frac{2R_1(\delta)}{\delta(2 + \delta)} \right) + 2\ln(k/(2\pi)) \ln \left(\frac{2R_1(\delta)}{\delta(2 + \delta)} \right) \right. \\
+ 2\pi C_2 + 4\pi \left(\frac{1}{\pi} \ln(k/(2\pi)) + C_2 \ln k + C_3 \right).\]

With the choice of \(T\), the main terms of \(\varepsilon_k\) are
\[\frac{\varphi(k)}{\sqrt{x}} \frac{1}{2\pi} \ln^2 \left(\frac{2R_1(\delta)}{\delta(2 + \delta)} \right) + \frac{\delta}{2}.\]

These terms are minimized by choosing
\[(27) \quad \delta = \frac{\varphi(k) \ln x}{\pi\sqrt{x}}.\]

Now, replacing \((26)\) and \((27)\) in \((25)\), we only have a function of \(x\) for fixed \(k\):
\[\varepsilon_k(x) := \varepsilon_k(x, T, \delta).\]

We simplify expression \((25)\):
\[
\frac{\varepsilon_k(x, T, \delta)}{\varphi(k)} \leq \tilde{\varepsilon}_k(x, T, \delta)
:= \frac{R_1(\delta)}{\delta} (\tilde{C}_T + \tilde{D}_T) / \sqrt{x} + (1 + \frac{\delta}{2})\tilde{E}(T) / \sqrt{x} + \frac{\delta}{2} + \frac{\tilde{R}}{x\varphi(k)}.\]

By choosing \(T = \frac{2R_1(\delta)}{\delta(2 + \delta)}\) and \(\delta = \frac{\ln x}{\pi\sqrt{x}}\), \(\tilde{\varepsilon}_k(x, T, \delta)\) became \(\tilde{\varepsilon}_k(x)\).

Hence,
\[
\tilde{\varepsilon}_k(x) \sqrt{x} = \frac{2 + \delta}{4\pi} \left[\ln^2 \left(\frac{2\pi\sqrt{x}}{\ln x} \cdot \frac{R_1(\delta)}{2 + \delta} \right) + 2\ln \left(\frac{k}{2\pi} \right) \ln \left(\frac{2\pi\sqrt{x}}{\ln x} \cdot \frac{R_1(\delta)}{2 + \delta} \right) \right.
\left. + 2\ln \left(\frac{k\sqrt{x}}{\ln x} \cdot \frac{R_1(\delta)}{2 + \delta} \right) + \ln x \frac{2 + \delta}{\sqrt{x} \cdot R_1(\delta)} (A) \right] + \frac{\ln x}{2\pi\varphi(k)} + \frac{\tilde{R}}{\varphi(k) \sqrt{x}} \right.
\left. + \frac{2 + \delta}{4\pi} (2 + 2\pi C_2 + 4\pi \left(\frac{1}{\pi} \ln(k/(2\pi)) \right) + C_2 \ln k + C_3) \right)
\]

with
\[A = 2C_2 \ln \left(\frac{2k\sqrt{x}}{\ln x} \cdot \frac{R_1(\delta)}{2 + \delta} \right) + 2C_3 + \frac{C_2}{2}.\]

Let \(\delta_1 = \frac{\ln x}{\pi\sqrt{x}}\) and \(\delta = \frac{2 + \delta + \delta^2}{2 + \delta} = 1 + \frac{\delta^2 + \delta}{2 + \delta} \leq d_1 := 1 + \frac{\delta^2 + \delta}{2 + \delta}\) because \(\delta \leq \frac{\ln x}{\pi\sqrt{x}}\).

By direct computation, for all \(k\) between 1 and 432 and \(x \geq x_0\), of \(\frac{\varepsilon_k(x) \sqrt{x}}{\varphi(k) \ln^n x}\), we find an upper bound 0.06012.
To obtain 1) in Theorem 7, we will study the sum in brackets for \(1 \leq k \leq \frac{4}{5} \ln x\):

\[
\left[\cdots \right] = \left[\frac{1}{4} \ln^2 x + \ln^2 \left(\frac{2\pi d_1}{\ln x} \right) + \ln x \ln \left(\frac{2\pi d_1}{\ln x} \right) + 2 \ln \left(\frac{4 \ln x}{10 \pi} \right) \ln \left(\frac{2\pi d_1}{\ln x} \right)
+ \ln \left(\frac{4 \ln x}{10 \pi} \right) \ln x + \frac{1}{2} \ln x + \ln(4d_1/5) + \frac{\ln x}{\sqrt{x}}(A) \right]
+ \frac{1}{2} \ln x + \ln \left(\frac{2\pi d_1}{\ln x} \right) + 1/2 + \ln(4 \ln x/(10 \pi))
+ \ln^2 \left(\frac{2\pi d_1}{\ln x} \right) + 2 \ln \left(\frac{4 \ln x}{10 \pi} \right) \ln \left(\frac{2\pi d_1}{\ln x} \right) + \ln(4d_1/5) + \frac{\ln x}{\sqrt{x}}(A). \]

We conclude that

\[
\lim_{x \to \infty} \frac{\varepsilon_k(x) \sqrt{x}}{\ln^2 x} = \frac{1}{8\pi},
\]

which is the same asymptotic bound as Schoenfeld’s [7] for \(\psi\).

The bound \(\varepsilon_k(x) \sqrt{x}\) is an increasing function of \(k\). Choose \(k = \frac{4}{5} \ln x\). Now \(\varepsilon_k(x) \sqrt{x}/ \ln^2 x\) is a decreasing function of \(x\) bounded by 0.0849229 for \(x \geq x_0\). \(\square\)

Remark. If we take \(k = 1\) in Theorem 7 our upper bound is twice as bad as the result of Schoenfeld [7, p. 337]: for \(x > 73.2\),

\[
|\psi(x) - x| \leq \frac{1}{8\pi} \sqrt{x} \ln^2 x.
\]

These differences are explained by:

- an exact computation of zeros with \(\gamma \leq D \approx 158\) (the preponderant ones!) in the sum \(\sum \frac{1}{|\gamma|}\);
- a better knowledge of \(R(T)\) (\(k\) fixed, \(k = 1\)).

Corollary 3. Assume GRH\((k, \infty)\). For all \(k\) used in Lemma 7 and \(x \geq 224\),

\[
\left| \psi(x; k, l) - \frac{x}{\varphi(k)} \right| \leq \frac{1}{4\pi} \sqrt{x} \ln^2 x.
\]

Proof. We use Theorem 5.2.1 of [3]: for all \(k\) noted in Lemma 4 and \(224 \leq x \leq 10^{10}\),

\[
|\psi(x; k, l) - \frac{x}{\varphi(k)}| \leq \sqrt{x}
\]

and \(\sqrt{x} < \frac{1}{4\pi} \sqrt{x} \ln^2 x\) for \(x \geq 35\). We conclude by Theorem 7. \(\square\)

7. Estimates for \(\pi(x; 3, l)\)

Definition 1. Let

\[
\pi(x; k, l) = \sum_{\substack{p \leq x \mod k \leq x \text{ and } p \text{ prime}}} 1
\]

be the number of primes smaller than \(x\) which are congruent to \(l\) modulo \(k\).

Our aim is to have bounds for \(\pi(x; 3, l)\). We show that

Theorem 8. For \(l = 1\) or 2,

(i) \(\frac{x}{1.1x} < \pi(x; 3, l)\) for \(x \geq 151\),

(ii) \(\pi(x; 3, l) < 0.55 \frac{x}{1.6x}\) for \(x \geq 229869\).
From this, we can deduce that for all \(x \geq 151 \),
\[
\frac{x}{\ln x} < \pi(x)
\]
because
\[
\pi(x) = \pi(x; 3, 1) + \pi(x; 3, 2) + 1.
\]

7.1. The upper bound. First we give the proof of Theorem 9(ii).

Lemma 13. Let
\[
I_n = \int_a^x \frac{dt}{\ln^n t}.
\]
Then
\[
I_n = \frac{x}{\ln^n x} - \frac{a}{\ln^n a} + nI_{n+1}.
\]
Furthermore, for \(x \geq 10^{10} \), for all \(k \leq 72 \), for all \(l \) relatively prime with \(k \),
\[
\max_{1 \leq y \leq x} | \theta(y; k, l) - \frac{y}{\varphi(k)} | \leq 2.072 \sqrt{x}.
\]

Furthermore, for \(x \geq 10^{10} \) and \(k = 3 \) or \(4 \),
\[
| \theta(x; k, l) - \frac{x}{\varphi(k)} | \leq 0.002238 \frac{x}{\varphi(k)}.
\]

Write first
\[
\pi(x; k, l) - \pi(x; 0; k, l) = \frac{\theta(x; k, l)}{\ln(x)} - \frac{\theta(x_0; k, l)}{\ln(x_0)} + \int_{x_0}^{x} \theta(t; k, l) \, \frac{dt}{t \ln^2 t}.
\]

Put \(x_0 := 10^5 \).

Preliminary computations :
\[
\theta(10^5, 3, 1) = 49753.417198 \cdots \quad \pi(10^5, 3, 1) = 4784.
\]
\[
\theta(10^5, 3, 2) = 49930.873458 \cdots \quad \pi(10^5, 3, 2) = 4807.
\]
Put \(c_0 := \frac{1.022238}{2} \) and \(K = \max_i (\pi(10^5, 3, l) - \theta(10^5, 3, l)/\ln(10^5)) \approx 470. \)

\bullet For \(10^{20} \leq x \),
\[
\pi(x; k, l) - \pi(10^5; k, l) = \frac{\theta(x; k, l)}{\ln(x)} - \frac{\theta(10^5; k, l)}{\ln(10^5)} + \int_{10^5}^{x} \theta(t; k, l) \, \frac{dt}{t \ln^2 t}.
\]

But
\[
\int_{10^5}^{x} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt = \int_{10^5}^{10^{10}} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt + \int_{10^{10}}^{\sqrt{x}} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt + \int_{\sqrt{x}}^{x} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt
\]
and, by Theorem 9
\[
\int_{10^5}^{10^{10}} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt < M := 1/\varphi(k) \cdot \int_{10^5}^{10^{10}} \frac{dt}{t \ln^2 t} + 2.072 \cdot \int_{10^5}^{10^{10}} \frac{dt}{\sqrt{t} \ln^2 t}.
\]
\[
\int_{10^{10}}^{\sqrt{x}} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt < c_0 \frac{\sqrt{x} - 10^{10}}{\ln^2 10^{10}}.
\]
\[
\int_{\sqrt{x}}^{x} \frac{\theta(t; k, l)}{t \ln^2 t} \, dt < c_0 \frac{x - \sqrt{x}}{\ln^2 \sqrt{x}}.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We compute $M = 10381055.54 \cdots$. Then

\[\pi(x;3,l) < c_0 \frac{x}{\ln x} + K + M + c_0 \left(\frac{\sqrt{x} - 10^{10} \ln 10^{10} + x - \sqrt{x}}{\ln^2 x} \right) \]
\[< \frac{x}{\ln x} \left(c_0 + \left(K + M + c_0 \frac{10^{20} - 10^{10} \ln 10^{20}}{\ln^2 10^{10}} \right) \right) \]
\[< 0.545 \frac{x}{\ln x}. \]

- For $10^{10} \leq x \leq 10^{20}$,

\[\pi(x;3,l) < K + \int_{10^{10}}^{x} \frac{\theta(t;3,l)}{t \ln^2 t} dt + \int_{10^{10}}^{x} \frac{\theta(t;3,l)}{t \ln^2 t} dt + c_0 \frac{x}{\ln x} \]
\[< \frac{x}{\ln x} \left(c_0 + \frac{\ln x}{x} (K + M - 10^{10} \frac{c_0}{\ln^2 10^{10}} + c_0 \frac{c_0}{\ln^2 10^{10}} \ln x) \right) \]
\[< 0.5468 \frac{x}{\ln x}. \]

- For $10^5 \leq x \leq 10^{10}$,

\[\int_{10^5}^{x} \frac{\theta(t;3,l)}{t \ln^2 t} dt < \frac{1}{2} \int_{10^5}^{x} \frac{dt}{\ln^2 t} + 2.072 \int_{10^5}^{x} \frac{dt}{\sqrt{t} \ln^2 t} \]
\[= \frac{1}{2} \left(\frac{x}{\ln^2 x} - \frac{10^5}{\ln^2 10^5} + 2 \int_{10^5}^{x} \frac{dt}{\ln^3 t} \right) + 2.072 \int_{10^5}^{x} \frac{dt}{\sqrt{t} \ln^2 t}. \]

Now, \[\int_{a}^{b} \frac{dt}{\sqrt{t} \ln^2 t} = \left[\frac{2 \sqrt{t}}{\ln^2 t} \right]_{a}^{b} + 4 \int_{a}^{b} \frac{dt}{\sqrt{t} \ln^2 t}. \]

Therefore, if \[\pi(x;3,l) < \frac{1}{2} \frac{x}{\ln x} + 2.072 \frac{\sqrt{x}}{\ln x} + K \]
\[+ \frac{1}{2} \left(\frac{x}{\ln^2 x} - \frac{10^5}{\ln^2 10^5} + 2 \int_{10^5}^{x} \frac{dt}{\ln^3 t} \right) \]
\[+ 2.072 \left(\frac{2 \sqrt{x}}{\ln^2 x} - \frac{2 \sqrt{10^5}}{\ln^2 10^5} + 4 \int_{10^5}^{x} \frac{dt}{\sqrt{t} \ln^2 t} \right) \]
\[< 0.55 \frac{x}{\ln x} \quad \text{for} \quad x \geq 6 \cdot 10^5. \]

7.2. The lower bound. Let \(KK = \min(\pi(10^5,3,l) - \theta(10^5,3,l)/\ln(10^5)) \approx 462 \)
and \(c = 0.498881 = \frac{1-0.999238}{2} \).

- For $10^{10} \leq x,$

\[\pi(x;3,l) > KK + \frac{\theta(x;3,l)}{\ln x} + \int_{10^{10}}^{x} \frac{\theta(t;k,l)}{t \ln^2 t} dt \]
\[> \frac{cx}{\ln x} \]

because

\[KK > 0 \quad \text{and} \quad \int_{10^{10}}^{x} \frac{\theta(t;k,l)}{t \ln^2 t} dt > 0. \]

- For $10^5 \leq x \leq 10^{10}$.

Lemma 14 (McCurley [2]). For $x \geq 91807$ and $c_2 = 0.49585$, we have $\theta(x;3,l) \geq c_2 x$.
Remark. This bound is better than the one given in Theorem 9 for $x \leq 2.5 \cdot 10^5$.

$$\pi(x; 3, l) > KK + \frac{\theta(x; 3, l)}{\ln x} + \int_{10^5}^{x} \frac{\theta(t; k, l)}{t \ln^2 t} dt.$$

Thus for any x_0, x_1 with $10^5 \leq x_0 < x_1$,

$$\pi(x; 3, l) > KK + \frac{\theta(x; 3, l)}{\ln x} + \int_{10^5}^{x_0} \frac{\theta(t; k, l)}{t \ln^2 t} dt \text{ for } x \geq x_0$$

$$> \frac{x}{\ln x} \left(c_2 + \left(KK + \int_{10^5}^{x_0} \frac{\theta(t)}{t \ln^2 t} \frac{\ln x_1}{x_1} \right) \right) \text{ for } x_0 \leq x \leq x_1.$$

Using the previous remark, we find

$$\int_{10^5}^{x} \frac{\theta(t; k, l)}{t \ln^2 t} dt > c_2 \int_{10^5}^{x} \frac{dt}{\ln^2 t} \text{ if } 10^5 \leq x \leq 2.5 \cdot 10^5$$

and

$$> c_2 \int_{10^5}^{2.5 \cdot 10^5} \frac{dt}{\ln^2 t} + \int_{2.5 \cdot 10^5}^{x} \frac{t/2 - 2.0722\sqrt{t}}{t \ln^2 t} dt \text{ if } 2.5 \cdot 10^5 \leq x.$$

We use this to make step by step computations with Maple:

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^5</td>
<td>$2 \cdot 10^6$</td>
</tr>
<tr>
<td>$2 \cdot 10^6$</td>
<td>$3 \cdot 10^7$</td>
</tr>
<tr>
<td>$3 \cdot 10^7$</td>
<td>$3 \cdot 10^8$</td>
</tr>
<tr>
<td>$3 \cdot 10^8$</td>
<td>$3 \cdot 10^9$</td>
</tr>
<tr>
<td>$3 \cdot 10^9$</td>
<td>10^{10}</td>
</tr>
</tbody>
</table>

We conclude that $\pi(x; 3, l) > 0.499 \frac{x}{\ln x}$ for $10^5 \leq x \leq 10^{10}$.

7.3. Small values. We now check whether $0.49888 \frac{x}{\ln x} < \pi(x; 3, l) < 0.55 \frac{x}{\ln x}$ for $x < 6 \cdot 10^5$. It is sufficient to prove that

$$\pi(p; 3, l) < 0.55 \frac{p}{\ln p} \text{ for } p \equiv l \mod 3,$$

and if

$$0.49888 \frac{p}{\ln p} < \pi(p; 3, l) - 1 \text{ for } p \equiv l \mod 3.$$

The highest value not satisfying the first inequality is $p = 229849$, and the highest value not satisfying the second is $p = 151$. Furthermore, $\pi(229869; 3, l) \leq 10241 < \frac{229869}{\ln 229869} \approx 10241.0075$ and $\pi(151; 3, l) \geq 16 > 0.49888 \frac{151}{\ln 151} \approx 15.01$.

The conclusion is

$$0.49888 \frac{x}{\ln x} \leq \pi(x; 3, l) \leq 0.55 \frac{x}{\ln x} \text{ for } x > 229869.$$

Remark. We cannot show that $x/(2 \ln x) < \pi(x; 3, l)$ by using the formula $\theta(x) < c \cdot x$. We have obtained other formulas (see Theorem 6) which we will use below.
7.4. More precise lower bound of $\pi(x;3, l)$. Now we will give the proof of Theorem 8(i).

Classically,

$$\pi(x;3,l) - \pi(10^5;3,l) = \frac{\theta(x;3,l)}{\ln(x)} - \frac{\theta(10^5;3,l)}{\ln(10^5)} + \int_{10^5}^{x} \frac{\theta(t;3,l)}{t \ln^2 t} dt.$$

Now $\theta(t;3,l) > \frac{x}{\varphi(3)} \left(1 - \frac{\alpha}{\ln x}\right)$ with $\alpha = \varphi(3) \cdot 0.262$ by use of Theorem 8. So we write

$$KK = \min_{l} \left(\pi(10^5;3,l) - \frac{\theta(10^5;3,l)}{\ln(10^5)} \right),$$

$$\pi(x;3,l) > J(x, \alpha) = KK + \frac{x}{\varphi(k) \ln x} \left(1 - \frac{\alpha}{\ln x}\right) + \frac{1}{\varphi(k)} \int_{10^5}^{x} \frac{1 - \alpha/\ln t}{\ln^2 t} dt.$$

The derivative of $J(x, \alpha)$ with respect to x equals

$$\frac{1}{\varphi(k)} \left(\frac{1 - \alpha/\ln x}{\ln x} + \frac{\alpha}{\ln^3 x} \right).$$

Moreover, the derivative of $\frac{1}{\varphi(k) \ln x}$ equals

$$\frac{1}{\varphi(k)} \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x} \right).$$

The inequality

$$\frac{1}{\varphi(k)} \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x} \right) < \frac{1}{\varphi(k)} \left(\frac{1 - \alpha/\ln x}{\ln x} + \frac{\alpha}{\ln^3 x} \right)$$

holds if $\alpha - 1 < \alpha/\ln x$; this holds for all $x > 1$. The only thing to do is to find a value x_1 such that

$$J(x_1, \alpha) > \frac{x_1}{\varphi(k) \ln x_1}.$$

For $x_1 = 10^5$, $J(10^5, 0.524) \approx 4607.75$ and $\frac{10^5}{\ln 10^5} \approx 4342.94$. We verify by computer that the inequality holds for $x \leq 10^5$ and $l = 1$ or 2. We conclude that

$$\frac{x}{2 \ln x} < \pi(x;3,l) < x_1 \frac{1}{\varphi(k) \ln x_1}$$

for $x \geq 151$.

References

Département de Math., LACO, 123 avenue Albert Thomas, 87060 Limoges cedex, France
E-mail address: dusart@unilim.fr