EFFICIENT COMPUTATION OF THE EXTREME SOLUTIONS
OF \(X + A^*X^{-1}A = Q \) AND \(X - A^*X^{-1}A = Q \)

BEATRICE MEINI

Abstract. We propose a new quadratically convergent algorithm, having a low computational cost per step and good numerical stability properties, which allows the simultaneous approximation of the extreme solutions of the matrix equations \(X + A^*X^{-1}A = Q \) and \(X - A^*X^{-1}A = Q \). The algorithm is based on the cyclic reduction method.

1. Introduction

In this paper we are concerned with the design and analysis of a quadratically convergent algorithm for computing the extremal solutions of the matrix equations

(1.1) \[X + A^*X^{-1}A = Q \]

and

(1.2) \[X - A^*X^{-1}A = Q, \]

where \(Q \) is an \(m \times m \) Hermitian positive definite matrix, \(A \) is an \(m \times m \) matrix, and \(A^* \) denotes the conjugate transpose of \(A \). An algorithm is quadratically convergent (or, equivalently, has a double exponential convergence) if it generates a sequence \(\{X_n\}_n \) of approximations to the solution \(X \) such that \(||X - X_n|| \leq \gamma \sigma^n \), for positive constants \(\sigma < 1 \) and \(\gamma \), where \(|| \cdot || \) denotes any matrix norm; if the bound \(||X - X_n|| \leq \sigma^n \) holds, then we say that the convergence is linear.

In [10] it is shown that, if (1.1) has a positive definite solution \(X \), then there exist minimal and maximal solutions \(X_- \) and \(X_+ \), respectively, such that \(0 < X_- \leq X \leq X_+ \) for any positive definite solution \(X \). Here and hereafter, if \(X \) and \(Y \) are Hermitian matrices, \(X \leq Y \) \((X < Y)\) means that \(Y - X \) is positive semidefinite (definite).

Concerning equation (1.2), in [11] it is proved that there always exists a unique positive definite solution \(X_+ \), which is the maximal one, and, if \(A \) is nonsingular, there exists a unique negative definite solution \(X_- \), which is the minimal one. Here maximal and minimal must be intended according to the ordering for Hermitian matrices that we have introduced above.

We will refer to \(X_- \) and \(X_+ \) as the extreme solutions of (1.1), or of (1.2).

Equations (1.1) and (1.2) arise in a wide variety of research areas, which include control theory, ladder networks, dynamic programming, stochastic filtering and statistics (see [2, 28] for a list of references concerning (1.1), and [11] for references
about equation (1.2). Recently, theoretical properties of the extreme solutions and numerical methods for their computation have been investigated by several authors (see the papers [15, 14, 11, 28, 29, 9, 10, 2]). The available numerical methods are mainly based on fixed point iterations, or on applications of Newton’s algorithm.

In the recent paper [15] the authors analyze convergence properties of fixed point iterations and of Newton’s method for computing the maximal solutions of (1.1) and (1.2). They show that the rate of convergence of those algorithms is related to the spectral radius \(\rho(X_+^{-1}A) \) of the matrix \(X_+^{-1}A \). The convergence of fixed point iterations is linear when \(\rho(X_+^{-1}A) < 1 \). However, if \(\rho(X_+^{-1}A) \) is close to 1, the convergence may be very slow and it is more efficient to apply Newton’s method, which has a double exponential convergence. On the other hand, the drawback of the application of Newton’s method is the large computational cost per iteration; in fact, at each step the solution \(X \) of the matrix equation \(X + BXC = D \), where \(X, B, C, D \) are matrices, must be computed.

In this paper we devise a new algorithm that provides the simultaneous approximation of the extreme solutions of (1.1), or of (1.2). The algorithm has a double exponential convergence, like Newton’s method, and a low computational cost for each step, like fixed point iterations. Moreover, it shows good numerical stability properties.

The idea on which this algorithm is based arises from the closeness of equations (1.1) and (1.2) to certain problems related to Markov chains. Indeed, a similar (even though more complicated) matrix equation is encountered in the numerical solution of Markov chains described by Quasi Birth and Death processes (see [23]), where the fundamental problem is the computation of the minimal nonnegative solution \(G \) of

\[
G = A_0 + A_1 G + A_2 G^2,
\]

with \(A_0, A_1, A_2 \) nonnegative matrices such that \(A_0 + A_1 + A_2 \) is stochastic (i.e., \((A_0 + A_1 + A_2)e = e \) and \(e \) is the vector having all the entries equal to one). Here, minimal means that any other solution is component-wise larger than the minimal one. The matrix \(G \) is related to the minimal nonnegative solution \(U \) of the matrix equation

\[
I - U + A_2(I - U)^{-1}A_0 = I - A_1;
\]

in fact, \(G = (I - U)^{-1}A_0 \) (see [16] [18]). In the field of Markov chains, several algorithms have been developed for the numerical solution of (1.3) (see [17, 19, 21]). One of the most efficient methods, based on cyclic reduction [13], is proposed in [6] and consists in generating a sequence of nonlinear matrix equations of the form (1.3), such that the matrix coefficients quadratically converge to the coefficients of a linear equation that can be explicitly solved. The procedure provides the desired solution \(G \) and the corresponding matrix \(U \).

In this paper we show that the cyclic reduction algorithm can be efficiently applied for solving also the matrix equations (1.1) and (1.2). We observe that the matrix \(X_+^{-1}A \) solves a quadratic matrix equation of the form (1.3) and, according to the ideas developed in [5] [6], we rewrite the matrix equation in terms of an infinite block tridiagonal block Toeplitz system. By applying the cyclic reduction algorithm to this system, we generate a sequence of infinite block tridiagonal block systems, which are block Toeplitz except for the block entry in position (1, 1). Due to the nice spectral properties of \(X_+^{-1}A \), we show that the sequence of matrices
defining the infinite systems quadratically converges to a block diagonal matrix, and the first block diagonal entry of these matrices quadratically converges to X_+. More precisely, if we denote by X_n the block entry in position $(1,1)$ of the infinite matrix obtained at the n-th step of cyclic reduction, we prove that for equation (1.1), in the case where $\rho(X_+^{-1}A) < 1$ we have $\|I - X_nX_+^{-1}\| = O((\sigma + \epsilon)^{2^{-n}})$ for any $\epsilon > 0$ and for any matrix norm $\| \cdot \|$, where $\sigma = \rho(X_+^{-1}A)$. For equation (1.2), it always holds that $\rho(X_+^{-1}A) < 1$; thus the double exponential convergence is always guaranteed. If A is nonsingular, the algorithm provides the simultaneous approximation of X_+, for both equations. Each step of the algorithm only requires the solution of two linear systems and the computation of three matrix products; moreover, the conditioning of the matrices defining the linear systems is bounded from above by a constant.

The performed experiments show that our algorithm is much faster than the existing ones in many cases.

The paper is organized as follows. In Section 2 we recall theoretical results about the existence and properties of the solutions. In Sections 3 and 4 we present the new algorithm and perform some comparisons with the known ones for the solution of (1.1) and (1.2), respectively. In Section 5 we report some numerical results.

2. Solutions of the Matrix Equations

$X + A^*X^{-1}A = Q$ and $X - A^*X^{-1}A = Q$

In this section we recall conditions about the existence of the extreme solutions of (1.1) and (1.2), and some spectral properties of the matrix $X_+^{-1}A$, which will be used in the subsequent sections to show the convergence of our algorithm.

2.1. The equation $X + A^*X^{-1}A = Q$. Necessary and sufficient conditions for the existence of a positive definite solution of (1.1) are provided in [10]. More specifically, let us introduce the rational matrix function

$$\psi(\lambda) = \lambda A + Q + \lambda^{-1}A^*,$$

(2.1)

defined on the unit circle \mathcal{C} of the complex plane, which is Hermitian for any $\lambda \in \mathcal{C}$. This function is said to be regular if there exists at least a $\lambda \in \mathcal{C}$ such that $\det \psi(\lambda) \neq 0$.

The following fundamental results hold [10]:

Theorem 2.1. Equation (1.1) has a positive definite solution X if and only if $\psi(\lambda)$ is regular and $\psi(\lambda) \geq 0$ for all $\lambda \in \mathcal{C}$. Moreover, if equation (1.1) has a positive definite solution, then it has a maximal and minimal solution X_+ and X_-, respectively.

Theorem 2.2. Suppose that A is nonsingular. Then X solves

(2.2)

$$X + A^*X^{-1}A = I$$

if and only if $Y = I - X$ solves

(2.3)

$$Y + AY^{-1}A^* = I.$$

In particular, if Y_+ is the maximal solution of (2.3), then $X_- = I - Y_+$ is the minimal solution of (2.2).
The latter theorem can be easily generalized to the matrix equation (1.1) by multiplying (2.2) and (2.3) on the right and on the left by \(Q^{1/2} \). Thus, if \(A \) is nonsingular, the minimal solution of (1.1) is \(X_\to = Q - Y_\to \), where \(Y_\to \) is the maximal solution of the equation

\[
Y + AY^{-1}A^* = Q.
\]

Let \(r(T) \) be the numerical radius of an \(m \times m \) matrix \(T \), defined as

\[
r(T) = \max\{ |x^*Tx| : x \in \mathbb{C}^m, x^*x = 1 \}.
\]

Concerning the spectral properties of \(X_\to^{-1}A \), it is proved in [28] that \(\rho(X_\to^{-1}A) \leq 1 \). In [15] the authors characterize the eigenvalues of \(X_\to^{-1}A \) and give necessary and sufficient conditions so that \(\rho(X_\to^{-1}A) < 1 \):

Theorem 2.3. The eigenvalues of \(X_\to^{-1}A \) are precisely the eigenvalues of the matrix pencil \(\lambda F - H \), inside the closed unit disk, with half of the partial multiplicities for each eigenvalue on the unit circle, where

\[
F = \begin{bmatrix}
 I & 0 & 0 \\
 0 & 0 & 0 \\
 0 & -I & 0
\end{bmatrix}, \quad H = \begin{bmatrix}
 0 & 0 & -I \\
 Q & -I & A^* \\
 -A & 0 & 0
\end{bmatrix}.
\]

From the above theorem it follows that the eigenvalues of \(X_\to^{-1}A \) are the zeros in the closed unit disk of the polynomial \(\det(-A + \lambda Q - \lambda^2 A^*) \).

Theorem 2.4. It holds that \(\rho(X_\to^{-1}A) < 1 \) if and only if \(r(Q^{-1/2}AQ^{-1/2}) < 1/2 \).

Moreover, in [10] the following necessary and sufficient condition is given:

Theorem 2.5. It holds that \(\psi(\lambda) > 0 \) for all \(\lambda \in \mathbb{C} \) if and only if \(r(Q^{-1/2}AQ^{-1/2}) < 1/2 \).

From the above theorems it follows that \(X_\to^{-1}A \) has spectral radius strictly less than one if and only if \(\psi(\lambda) \) is positive definite on the unit circle.

2.2. The equation \(X - AA^{-1}X = Q \)

Concerning equation (1.2), in [11] the authors prove the following interesting results:

Theorem 2.6. The rational matrix function

\[
\psi(\lambda) = \lambda A + Q - \lambda^{-1}A^*
\]

is nonsingular for any \(\lambda \in \mathbb{C} \).

Theorem 2.7. The set of solutions of (1.2) is nonempty, and admits a maximal element \(X_\to \) and a minimal element \(X_\to^{-1}A \). \(X_\to \) is the unique positive definite solution, and if \(A \) is nonsingular, \(X_\to^{-1}A \) is the unique negative definite solution. Moreover, if \(A \) is nonsingular, \(X_\to = Q - Y_\to \), where \(Y_\to \) is the maximal solution of the equation

\[
Y - AY^{-1}A^* = Q.
\]

Concerning the matrix \(X_\to^{-1}A \), in [11] it is proved that its spectral radius is strictly less than one, and in [15] the following characterization of the eigenvalues is given:
Theorem 2.8. The eigenvalues of $X^{-1} A$ are precisely the eigenvalues of the matrix pencil $\lambda F - H$ inside the unit disk, where

$$
F = \begin{bmatrix}
I & 0 & 0 \\
0 & 0 & 0 \\
0 & -I & 0
\end{bmatrix}, \quad H = \begin{bmatrix}
0 & 0 & -I \\
Q & -I & -A^* \\
-A & 0 & 0
\end{bmatrix}.
$$

3. Computation of the extreme solutions of $X + A^* X^{-1} A = Q$

In this section we describe the new algorithm for the computation of the extreme solutions of (1.1) and compare it with the known methods.

Throughout this section we suppose that (ω) is regular and positive semidefinite for any $\lambda \in \mathbb{C}$, where $\psi(\lambda)$ is given in (2.1), so that the conditions of Theorem 2.1 are satisfied.

Let X be a solution of (1.1). Then, by multiplying on the right both sides of (1.1) by X^{-1}, we find that

$$
-I + QX^{-1} - A^* X^{-1} AX^{-1} = 0.
$$

Thus, the matrix $G = X^{-1} A$ solves the quadratic matrix equation

$$
-A + QG - A^* G^2 = 0.
$$

In addition, if Y is a solution of the matrix equation (2.4), then we have

$$
-I + QY^{-1} - AY^{-1} A^* Y^{-1} = 0,
$$

and thus $H = Y^{-1} A^*$ solves the quadratic matrix equation

$$
-A^* + QH - AH^2 = 0.
$$

In particular, if X_+ is the maximal solution of (1.1) and Y_+ is the maximal solution of (2.4), then the matrix equations (3.2), (3.4) have a solution $G_+ = X_+^{-1} A$, $H_+ = Y_+^{-1} A^*$, respectively, with spectral radius at most 1. Moreover, for Theorem 2.8 the eigenvalues of G_+ and H_+ are

$$
\lambda(G_+) = \{ \lambda : g(\lambda) = 0, \ |\lambda| \leq 1 \}
$$

and

$$
\lambda(H_+) = \{ \lambda : h(\lambda) = 0, \ |\lambda| \leq 1 \},
$$

respectively, where $g(\lambda) = \det(-A + Q\lambda - A^* \lambda^2)$, $h(\lambda) = \det(-A^* + Q\lambda - A\lambda^2)$. Since $g(\lambda) = 0$ if and only if $g(\lambda)^* = 0$, and since

$$
g(\lambda)^* = \det(-A^* + Q\bar{\lambda} - A\bar{\lambda}^2) = h(\bar{\lambda}),
$$

we conclude that λ is an eigenvalue of G_+ if and only if $\bar{\lambda}$ is an eigenvalue of H_+. In particular it holds that $\rho(G_+) = \rho(H_+)$.

The nice relation between the matrix equations (1.1), (2.4) and the quadratic matrix equations (3.2), (3.4), and the spectral properties of the solutions of the latter equations allow us to derive a fast algorithm for the simultaneous computation of X_+ and Y_+.

If A is nonsingular, the matrix Y_+ enables us to recover the minimal solution X_- of (1.1) by means of the relation $X_- = Q - Y_+$.

The matrices X_+ and Y_+ can be simultaneously and efficiently computed by rewriting the matrix equations (3.1), (3.2), (3.3), (3.4) in terms of infinite linear
systems, and by applying the cyclic reduction algorithm, according to the ideas developed in [5, 6, 7]. In fact, we observe that the following equations are satisfied:

\begin{align}
\begin{pmatrix}
Q & -A^* & 0 \\
-A & Q & -A^* \\
0 & -A & Q & \ddots
\end{pmatrix}
& \begin{pmatrix}
I \\
G_+ \\
G_+^2 \\
\vdots
\end{pmatrix}
\begin{pmatrix}
X_+^{-1} \\
0 \\
0 \\
\vdots
\end{pmatrix}
=
\begin{pmatrix}
I \\
0 \\
0 \\
\vdots
\end{pmatrix}, \\
\begin{pmatrix}
Q & -A^* & 0 \\
-A & Q & -A \\
0 & -A^* & Q & \ddots
\end{pmatrix}
& \begin{pmatrix}
I \\
H_+ \\
H_+^2 \\
\vdots
\end{pmatrix}
\begin{pmatrix}
Y_+^{-1} \\
0 \\
0 \\
\vdots
\end{pmatrix}
=
\begin{pmatrix}
I \\
0 \\
0 \\
\vdots
\end{pmatrix}.
\end{align}

(3.5)

(3.6)

By following the strategy successfully devised in [5, 6, 7] for solving nonlinear matrix equations arising in Markov chains, we apply the cyclic reduction algorithm to the above systems. This consists in performing an even-odd permutation of the block rows and columns, followed by one step of Gaussian elimination, thus generating the sequence of systems:

\begin{align}
\begin{pmatrix}
X_n & -A_n^* & 0 \\
-A_n & Q_n & -A_n^* \\
0 & -A_n & Q_n & \ddots
\end{pmatrix}
& \begin{pmatrix}
I \\
G_+^2 \\
G_+^2 2^n \\
\vdots
\end{pmatrix}
\begin{pmatrix}
X_+^{-1} \\
0 \\
0 \\
\vdots
\end{pmatrix}
=
\begin{pmatrix}
I \\
0 \\
0 \\
\vdots
\end{pmatrix}, \\
\begin{pmatrix}
Y_n & -A_n^* & 0 \\
-A_n^* & Q_n & -A_n \\
0 & -A_n^* & Q_n & \ddots
\end{pmatrix}
& \begin{pmatrix}
I \\
H_+^2 \\
H_+^2 2^n \\
\vdots
\end{pmatrix}
\begin{pmatrix}
Y_+^{-1} \\
0 \\
0 \\
\vdots
\end{pmatrix}
=
\begin{pmatrix}
I \\
0 \\
0 \\
\vdots
\end{pmatrix},
\end{align}

(3.7)

The block entries of each system are defined by the following recursions:

\begin{align}
A_0 &= A, \quad Q_0 = X_0 = Y_0 = Q, \\
A_{n+1} &= A_n Q_n^{-1} A_n, \\
Q_{n+1} &= Q_n - A_n Q_n^{-1} A_n^* - A_n^* Q_n^{-1} A_n, \\
X_{n+1} &= X_n - A_n^* Q_n^{-1} A_n, \\
Y_{n+1} &= Y_n - A_n Q_n^{-1} A_n^*, \quad n \geq 0.
\end{align}

(3.8)

Observe that the matrices Q_n, X_n and Y_n are Hermitian, and thus the two block tridiagonal matrices in (3.7) are Hermitian.

The spectral theory of Hermitian block Toeplitz matrices [8, 24, 25, 22, 21, 27] guarantees the positive definitiveness, and thus the nonsingularity, of the blocks Q_n. To prove this, let us introduce the function $f : (-\pi, \pi) \to \mathbb{H}^m$, defined as $f(\theta) = -e^{i\theta} A + Q - e^{-i\theta} A^*$, where i is the imaginary unit, and \mathbb{H}^m is the set of $m \times m$ Hermitian matrices. Let us denote by

\begin{align}
\mu_1 &= \inf_{\theta \in (-\pi, \pi)} \lambda_{\min}(f(\theta)), \\
\mu_2 &= \sup_{\theta \in (-\pi, \pi)} \lambda_{\max}(f(\theta)),
\end{align}
where $\lambda_{\min}(f(\theta))$ (resp. $\lambda_{\max}(f(\theta))$) is the smallest (resp. largest) eigenvalue of $f(\theta)$.

Since $\psi(\lambda) \geq 0$ for any $\lambda \in C$, it holds that $f(\theta) \geq 0$ and $\mu_{1} \geq 0$. Moreover, since $\psi(\lambda)$ is regular and $f(\theta)$ is a trigonometric matrix polynomial, then $f(\theta)$ is positive definite for any θ in the interval $(-\pi, \pi)$ except at most a finite number of points.

From these properties, the following result, which guarantees the applicability of the cyclic reduction algorithm and the boundness in norm of the sequence $\{Q_{n}\}_{n}$, $\{X_{n}\}_{n}$ and $\{Y_{n}\}_{n}$, can be proved:

Theorem 3.1. The matrices Q_{n}, X_{n}, Y_{n}, $n \geq 0$, are positive definite, and their eigenvalues belong to the interval $[\mu_{1}, \mu_{2}]$. Moreover, it holds that $0 < Q_{n+1} \leq Q_{n}$, $0 < X_{n+1} \leq X_{n}$, $0 < Y_{n+1} \leq Y_{n}$, for $n \geq 0$.

Proof. For the properties of cyclic reduction [7, 8, 9], the matrices Q_{n} can be viewed as a Schur complement in T_{2n+1-1}, where T_{n} is the $n \times n$ block matrix obtained by truncating the matrix in (3.5) at the block size n; similarly X_{n} and Y_{n} can be viewed as Schur complements in T_{2n} and U_{2n}, respectively, where U_{n} is the $n \times n$ block matrix obtained by truncating the matrix in (3.6) at the block size n.

On the other hand, since T_{n} and U_{n} are Hermitian block Toeplitz matrices, their eigenvalues belong to the interval $[\mu_{1}, \mu_{2}]$ (see [7, 24, 25, 22, 21, 27]); moreover, since the set where $f(\theta)$ is positive definite has strictly positive Lebesgue measure, the matrices T_{n} and U_{n} are positive definite for any n [7, 24, 25, 22, 21, 27]. In particular the Schur complements Q_{n}, X_{n}, Y_{n} are also positive definite and their eigenvalues belong to the interval $[\mu_{1}, \mu_{2}]$ (see [21]). From (3.8) it follows that the sequences $\{Q_{n}\}_{n}$, $\{X_{n}\}_{n}$ and $\{Y_{n}\}_{n}$ are monotone.

If $\psi(\lambda) > 0$ for any $\lambda \in C$, then $\mu_{1} > 0$; thus $\{Q_{n}^{-1}\}_{n}$ is bounded in norm, and the condition number of the matrices $\{Q_{n}\}_{n}$ is bounded. In this case the sequences $\{X_{n}\}_{n}$ and $\{Y_{n}\}_{n}$ quadratically converge to X_{+} and Y_{+}, respectively:

Theorem 3.2. If $\psi(\lambda) > 0$ for any $\lambda \in C$, then for any $\epsilon > 0$ and for any matrix norm $\| \cdot \|$ it holds that

$$
\|I - X_{n}X_{+}^{-1}\| = O \left((\sigma + \epsilon)^{2}2^{n} \right), \quad \|I - Y_{n}Y_{+}^{-1}\| = O \left((\sigma + \epsilon)^{2}2^{n} \right),
$$

where $\sigma = \rho(X_{+}^{-1}A) < 1$. Moreover, it holds that $\|A_{n}\| = O \left((\sigma + \epsilon)^{2}2^{n} \right)$.

Proof. From (3.7) we obtain that, for any n, the following relations hold:

(3.9) \quad -I + X_{n}X_{+}^{-1} - A_{n}^{*}G_{+}^{2n}X_{+}^{-1} = 0,

(3.10) \quad -A_{n} + Q_{n}G_{+}^{2n} - A_{n}G_{+}^{2n} = 0,

(3.11) \quad -I + Y_{n}Y_{+}^{-1} - A_{n}H_{+}^{2n}Y_{+}^{-1} = 0,

(3.12) \quad -A_{n}^{*} + Q_{n}H_{+}^{2n} - A_{n}H_{+}^{2n} = 0.

From (3.10) and (3.12) we have

(3.13) \quad A_{n}(I - H_{+}^{2}2^{n}G_{+}^{2n}2^{n}) = Q_{n}(I - H_{+}^{2}2^{n}G_{+}^{2n}2^{n})G_{+}^{2n}.

Since $\rho(G_{+}) = \rho(H_{+}) = \sigma < 1$ for Theorems 2.4 and 2.5 for any $\epsilon > 0$ there exists a matrix norm $\| \cdot \|$ such that $\|G_{+}\| \leq \sigma + \epsilon$. Thus, since $\{Q_{n}\}_{n}$ is bounded in norm, from (3.13) it follows that $\|A_{n}\| = O \left((\sigma + \epsilon)^{2}2^{n} \right)$. From (3.9) and (3.11) we obtain
that $\|I - X_nX_+^{-1}\| = O((\sigma + \epsilon)^{2^{2n}})$. Similarly, we prove that $\|I - Y_nY_+^{-1}\| = O((\sigma + \epsilon)^{2^{2n}})$.

The algorithm for the computation of X_+ and X_- is synthesized by the following scheme:

Algorithm 3.1 (Cyclic reduction for (1.1)).

1: Set $X_0 = Y_0 = Q_0 = Q$, $A_0 = A$.
2: For $n = 0, 1, \ldots$ compute

$$A_{n+1} = A_nQ_n^{-1}A_n,$$
$$Q_{n+1} = Q_n - A_nQ_n^{-1}A_n^* - A_n^*Q_n^{-1}A_n,$$
$$X_{n+1} = X_n - A_n^*Q_n^{-1}A_n,$$
$$Y_{n+1} = Y_n - A_nQ_n^{-1}A_n^*,$$

until $\|X_{n+1} - X_n\|_\infty < \epsilon$, $\|Y_{n+1} - Y_n\|_\infty < \epsilon$, for a fixed error bound $\epsilon > 0$.
3: X_{n+1} provides an approximation to X_+, and, if A is nonsingular, $Q - Y_{n+1}$ provides an approximation to X_-.

If we are interested only in the computation of the maximal solution X_+ it is sufficient to skip the computation of the sequence $\{Y_n\}_n$.

One step of the above algorithm requires the solution of two Hermitian linear systems (i.e., the computation of $A_nQ_n^{-1}$ and $A_n^*Q_n^{-1}$), with bounded condition number, and the computation of three matrix products.

If the hypothesis of Theorem 3.2 is not satisfied, then $\rho(X_+^{-1}A) = 1$. In this case $\{X_n\}_n$, $\{Y_n\}_n$, $\{Q_n\}_n$ are still Hermitian positive definite and bounded in norm. In general, the sequence $\{Q_n^{-1}\}_n$ may be unbounded. However, if the sequence $\{A_n\}_n$ converges to zero and the sequence $\{(X_+^{-1}A)^{2^n}\}_n$ is bounded, the sequence $\{X_n\}_n$ still converges to X_+.

Our algorithm can be compared with classical algorithms, which are based on fixed point iterations or Newton’s method. The basic fixed point iteration consists in the following:

Algorithm 3.2 (Fixed point iteration for (1.1)).

1: Set $X_0 = Q$.
2: For $n = 0, 1, 2, \ldots$, compute $X_{n+1} = Q - A^*X_n^{-1}A$ until $\|X_{n+1} - X_n\|_\infty < \epsilon$.
3: X_{n+1} provides an approximation to X_+.

In [15] it is proved that $\{X_n\}_n$ converges to X_+ with $\limsup_{n \to \infty} \sqrt{\|X_n - X_+\|}$ $\leq \rho(X_+^{-1}A)^2$. Thus the sequence generated by Algorithm 3.2 converges linearly when $\rho(X_+^{-1}A) < 1$. Each step of the above algorithm requires the solution of a Hermitian linear system and a matrix product; hence the cost of the cyclic reduction algorithm is roughly twice that of the fixed point iteration. On the other hand, if we wish to compute also the minimal solution X_- with fixed point iterations, we must apply from scratch the algorithm to the matrix equation (2.4), or apply an “ad hoc” fixed point iteration described in [10]; thus the computational cost per step is the same as cyclic reduction.

To avoid possible numerical instability problems due to matrix inversions, the following inversion free variant is proposed in [15]:

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Algorithm 3.3 (Inversion free fixed point iteration for (1.1)).

1: Set $X_0 = Q$, $Y_0 = I/||Q||_\infty$.
2: For $n = 0, 1, 2, \ldots$, compute

\[
Y_{n+1} = Y_n(2I - X_nY_n),
X_{n+1} = Q - A^*Y_{n+1}A,
\]

until $||X_{n+1} - X_n||_\infty < \epsilon$.
3: X_{n+1} provides an approximation to $X_+.$

The latter algorithm requires four matrix products at each step; in [15] it is shown that its convergence rate is roughly the same as that of Algorithm 3.2.

Finally, Newton’s method consists in the following:

Algorithm 3.4 (Newton’s method for (1.1)).

1: Set $X_0 = Q$.
2: For $n = 1, 2, \ldots$, compute $L_n = X_{n-1}^{-1}A$ and solve

\[
X_n - L_n^*X_nL_n = Q - 2L_n^*A, \tag{3.14}
\]

until $||X_n - X_{n-1}||_\infty < \epsilon$.
3: X_n provides an approximation to $X_+.$

Each step of Newton’s method requires the solution of the Hermitian system $X_{n-1}L_n = A$, one matrix product and the solution of the Stein equation (3.14); thus the computational cost of each step is much larger than the cost of fixed point iterations and cyclic reduction. If equation (3.14) is solved with the algorithm described in [12], the computational time for each iteration is roughly 10–15 times that for Algorithm 3.2 (see [15]). Moreover, if $X_+^{-1}A$ has eigenvalues very close to the unit circle, equation (3.14) can be nearly singular [15]. In [15] it is proved that the convergence of $\{X_n\}_n$ to X_+ is quadratic if $\rho(X_+^{-1}A) < 1$, either quadratic or linear with rate $1/2$ if $\rho(X_+^{-1}A) = 1$ and all the eigenvalues of $X_+^{-1}A$ on the unit circle are semi-simple.

Hence Newton’s method presents the same nice features of cyclic reduction in terms of convergence, but it is much more expensive in terms of computational cost, and more difficult to be implemented.

4. Computation of the extreme solutions of $X - A^*X^{-1}A = Q$

For the computation of the maximal and minimal solutions X_+ and X_-, respectively, of $X - A^*X^{-1}A = Q$ we can apply a technique similar to the one used in the previous section. Specifically, we introduce the maximal solution Y_+ of (2.6), and observe that the following hold:

\[
-I + QX_+^{-1} + A^*X_+^{-1}AX_+^{-1} = 0,
-I + QY_+^{-1} + AY_+^{-1}A^*Y_+^{-1} = 0.
\]
Thus, by setting $G_+ = X_+^{-1}A$ and $H_+ = Y_+^{-1}A^*$, the following linear systems are verified:

$$
\begin{bmatrix}
Q & A^* & 0 \\
-A & Q & A^* \\
-A & Q & \\
0 & \cdots & \cdots \\
0 & \cdots & \cdots
\end{bmatrix}
\begin{bmatrix}
I \\
G_+ \\
G_+^2 \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
X_+^{-1} \\
0 \\
0 \\
\vdots \\
\vdots
\end{bmatrix},
$$

(4.1)

$$
\begin{bmatrix}
Q & A \\
-A^* & Q & A \\
-A^* & Q & \\
0 & \cdots & \cdots \\
0 & \cdots & \cdots
\end{bmatrix}
\begin{bmatrix}
I \\
H_+ \\
H_+^2 \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
Y_+^{-1} \\
0 \\
0 \\
\vdots \\
\vdots
\end{bmatrix}.
$$

(4.2)

The infinite matrices in the above systems are block Toeplitz, but are not Hermitian. However, if we apply one step of cyclic reduction, we obtain the following systems:

$$
\begin{bmatrix}
X_1 & -A_1^* & 0 \\
-A_1 & Q_1 & -A_1^* \\
-A_1 & Q_1 & \\
0 & \cdots & \cdots \\
0 & \cdots & \cdots
\end{bmatrix}
\begin{bmatrix}
I \\
G_2^* \\
G_2^4 \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
X_+^{-1} \\
0 \\
0 \\
\vdots \\
\vdots
\end{bmatrix},
$$

(4.3)

$$
\begin{bmatrix}
Y_1 & -A_1^* & 0 \\
-A_1^* & Q_1 & -A_1 \\
-A_1^* & Q_1 & \\
0 & \cdots & \cdots \\
0 & \cdots & \cdots
\end{bmatrix}
\begin{bmatrix}
I \\
H_2^* \\
H_2^4 \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
Y_+^{-1} \\
0 \\
0 \\
\vdots \\
\vdots
\end{bmatrix},
$$

where

$$
A_1 = AQ^{-1}A, \\
Q_1 = Q + AQ^{-1}A^* + A^*Q^{-1}A, \\
X_1 = Q + A^*Q^{-1}A, \\
Y_1 = Q + AQ^{-1}A^*.
$$

(4.3)

Thus, after one step of cyclic reduction, we obtain two systems with Hermitian matrices, with the structure of (3.7), where the diagonal blocks are positive definite matrices. Hence, one step of cyclic reduction leads to a Hermitian system, as in the case of equation (1.1). Moreover, observe that the function

$$
\psi_1(\lambda) = \lambda A_1 + Q_1 + \lambda^{-1}A_1^*
$$

is such that $\psi_1(\lambda) > 0$ for any $\lambda \in \mathbb{C}$, since $\psi_1(\lambda) = Q + (A + \bar{\lambda}A^*)Q^{-1}(A^* + \lambda A)$. If we apply cyclic reduction to systems (4.2), we generate the sequence (3.7), for $n \geq 1$, where

$$
A_{n+1} = A_nQ_n^{-1}A_n, \\
Q_{n+1} = Q_n - A_nQ_n^{-1}A_n^* - A_n^*Q_n^{-1}A_n, \\
X_{n+1} = X_n - A_n^*Q_n^{-1}A_n, \\
Y_{n+1} = Y_n - A_nQ_n^{-1}A_n^*, \ n \geq 1,
$$

(4.4)

and A_1, Q_1, X_1 and Y_1 are defined in (4.3).

Without any assumption, the following convergence result can be proved:
Theorem 4.1. For the sequences of matrices \(\{X_n\}_n, \{Y_n\}_n, \{Q_n\}_n\), defined in (4.2), the following hold:

1. \(0 < X_{n+1} \leq X_n, 0 < Y_{n+1} \leq Y_n, 0 < Q_{n+1} \leq Q_n, n = 1, 2, \ldots\);
2. \(\{Q_n\}_n\) and \(\{Q^{-1}_n\}_n\) are bounded in norm.

Moreover, for any \(\epsilon > 0\) and for any matrix norm \(\| \cdot \|\) it holds that

\[
\|I - X_nX^{-1}_+\| = O((\sigma + \epsilon)^{2-2^n}), \\
\|I - Y_nY^{-1}_+\| = O((\sigma + \epsilon)^{2-2^n}), \\
\|A_n\| = O((\sigma + \epsilon)^{2^n}),
\]

where \(\sigma = \rho(X_+^{-1}A) < 1\).

Proof. The matrices \(Q_n\) and \(A_n\), \(n \geq 2\), can be seen as the matrices generated by relations (4.3), starting from \(Q_1\) and \(A_1\) defined in (4.2). Since \(\psi_1(\lambda) > 0\) for any \(\lambda \in \mathcal{C}\), from Theorem 3.1 it follows that \(Q_n\) is positive definite for any \(n\), and both sequences \(\{Q_n\}_n\) and \(\{Q^{-1}_n\}_n\) are bounded in norm; the monotonicity of \(\{Q_n\}_n\) trivially holds. The convergence properties of the sequences \(\{X_n\}_n, \{Y_n\}_n\) and \(\{A_n\}_n\) follow exactly as in the proof of Theorem 3.2. Since by construction \(X_n \geq X_{n+1}\) (resp. \(Y_n \geq Y_{n+1}\)) for any \(n \geq 1\), and since \(\{X_n\}_n\) (resp. \(\{Y_n\}_n\)) converges to \(X_+\) (resp. \(Y_+\)), it follows that \(X_n > 0\) (resp. \(Y_n > 0\)) for any \(n\) \(\square\).

From the above theorem, the quadratic convergence is always guaranteed, and the condition number of \(Q_n\) is always bounded.

If \(A\) is nonsingular, the matrix \(X_-\) can be recovered from \(Y_+\) by means of the relation \(X_- = Q - Y_+\) (see (11)).

The resulting algorithm is resumed below:

Algorithm 4.1 (Cyclic reduction for (1.2)).

1: Set

\[
A_1 = AQ^{-1}A, \quad Q_1 = Q + AQ^{-1}A^* + A^*Q^{-1}A, \\
X_1 = Q + A^*Q^{-1}A, \quad Y_1 = Q + AQ^{-1}A^*.
\]

2: For \(n = 1, 2, \ldots\) compute

\[
A_{n+1} = A_nQ^{-1}_nA_n, \\
Q_{n+1} = Q_n - A_nQ^{-1}_nA_n^* - A_n^*Q^{-1}_nA_n, \\
X_{n+1} = X_n - A_nQ^{-1}_nA_n, \\
Y_{n+1} = Y_n - A_nQ^{-1}_nA_n^*,
\]

until \(\|X_{n+1} - X_n\| < \epsilon, \|Y_{n+1} - Y_n\| < \epsilon\).

3: \(X_{n+1}\) provides an approximation to \(X_+\), and, if \(A\) is nonsingular, \(Q - Y_{n+1}\) provides an approximation to \(X_-\).

If we are interested only in \(X_+\), it is sufficient to skip the computation of the sequence \(\{Y_n\}_n\).

The above algorithm has the same nice features as Algorithm 3.1 in terms of computational cost and convergence properties.

We may compare our algorithm with the ones customarily used in the literature, which we recall below:
Algorithm 4.2 (Fixed point iteration for (1.2)).
1: Set $X_0 = Q$.
2: For $n = 0, 1, 2, \ldots$, compute $X_{n+1} = Q + A^* X_n^{-1} A$, until $\|X_{n+1} - X_n\|_\infty < \epsilon$.
3: X_{n+1} provides an approximation to X_+.

Algorithm 4.3 (Newton’s method for (1.2)).
1: Set X_0 sufficiently close to X_+.
2: For $n = 1, 2, \ldots$, compute $L_n = X_n^{-1} A$ and solve
 \[
 X_n + L_n^* X_n L_n = Q + 2 L_n^* A, \tag{4.5}
 \]
3: X_n provides an approximation to X_+.

The above algorithms present the same characteristics as Algorithms 3.2 and 3.4, in terms of computational cost and convergence rate. Concerning Newton’s method, the initial guess X_0 must be chosen close to the solution X_+ in order to guarantee the convergence [15]; in practice, the starting point X_0 is chosen as the approximation provided after a few steps of fixed point iterations (Algorithm 4.2).

The cyclic reduction algorithm has guaranteed quadratic convergence, low computational cost per iteration, and good numerical stability properties; moreover, unlike Newton’s method, it does not need an initial guess X_0 sufficiently close to the solution X_+.

5. Numerical results

Concerning (1.1), we have compared the proposed Algorithm 3.1 with the fixed point iterations (Algorithms 3.2 and 3.3), and with Newton’s method (Algorithm 3.4), for the computation of X_+; for equation (1.2) we have compared Algorithm 4.1 with the fixed point iteration (Algorithm 4.2).

We implemented the algorithms in Fortran 90, and run the programs on a Pentium II. For the solution of systems (3.14) and (4.5) we have used the Fortran implementation of [12].

We considered the following problems:

Example 5.1. This is an example concerning (1.1), presented in [15]. The matrices A and Q are
\[
A = \begin{bmatrix}
0.37 & 0.13 & 0.12 \\
-0.30 & 0.34 & 0.12 \\
0.11 & -0.17 & 0.29
\end{bmatrix}, \quad Q = \begin{bmatrix}
1.20 & -0.30 & 0.10 \\
-0.30 & 2.10 & 0.20 \\
0.10 & 0.20 & 0.65
\end{bmatrix}.
\]

For the stopping condition of all the algorithms we have chosen $\epsilon = 10^{-11}$. To reach the required accuracy, the cyclic reduction (Algorithm 3.1) needs 7 iterations, fixed point iteration (Algorithm 3.2) 49 iterations, the inversion free variant (Algorithm 3.3) 52 iterations, and Newton’s method (Algorithm 3.4) 6 iterations. The CPU time needed by all the algorithms is negligible, since it is less than 0.01 seconds.

Example 5.2. We consider again equation (1.1), with $Q = I$ and A symmetric, whose entries are defined by the following scheme:

1. Fix a real $0 \leq \alpha < 1/2$.
2. For $i = 1, \ldots, m$:
 (a) for $j = i, \ldots, m$, set $a_{i,j} = i^2 + j$;
 (b) compute $s_1 = \sum_{j=1}^{i-1} a_{i,j}$, $s_2 = \sum_{j=i}^{m} a_{i,j}$;
Table 1. Example 5.2: number of iterations and errors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m = 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>1.4E-15</td>
<td>6</td>
<td>1.2E-14</td>
<td>6</td>
<td>2.3E-14</td>
<td>3</td>
<td>4.0E-15</td>
</tr>
<tr>
<td>0.2</td>
<td>5</td>
<td>1.4E-15</td>
<td>11</td>
<td>2.6E-12</td>
<td>11</td>
<td>5.2E-12</td>
<td>4</td>
<td>3.7E-15</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
<td>1.5E-15</td>
<td>16</td>
<td>2.9E-11</td>
<td>17</td>
<td>1.4E-11</td>
<td>5</td>
<td>3.9E-15</td>
</tr>
<tr>
<td>0.01</td>
<td>7</td>
<td>1.3E-15</td>
<td>50</td>
<td>1.7E-10</td>
<td>51</td>
<td>1.5E-10</td>
<td>6</td>
<td>3.1E-15</td>
</tr>
<tr>
<td>0.001</td>
<td>9</td>
<td>2.3E-15</td>
<td>141</td>
<td>6.9E-10</td>
<td>142</td>
<td>6.8E-10</td>
<td>8</td>
<td>3.2E-15</td>
</tr>
<tr>
<td>0.0001</td>
<td>10</td>
<td>5.7E-15</td>
<td>388</td>
<td>2.4E-09</td>
<td>389</td>
<td>2.4E-09</td>
<td>9</td>
<td>3.7E-15</td>
</tr>
<tr>
<td>0</td>
<td>26</td>
<td>5.3E-09</td>
<td>5872</td>
<td>5.8E-05</td>
<td>5873</td>
<td>5.9E-05</td>
<td>24</td>
<td>1.3E-08</td>
</tr>
<tr>
<td></td>
<td>m = 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>2.9E-15</td>
<td>6</td>
<td>1.2E-14</td>
<td>6</td>
<td>2.3E-14</td>
<td>3</td>
<td>6.9E-15</td>
</tr>
<tr>
<td>0.2</td>
<td>5</td>
<td>2.8E-15</td>
<td>11</td>
<td>2.6E-12</td>
<td>11</td>
<td>5.2E-12</td>
<td>4</td>
<td>6.6E-15</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
<td>2.3E-15</td>
<td>16</td>
<td>2.9E-11</td>
<td>17</td>
<td>1.4E-11</td>
<td>5</td>
<td>5.9E-15</td>
</tr>
<tr>
<td>0.01</td>
<td>7</td>
<td>1.8E-15</td>
<td>50</td>
<td>1.7E-10</td>
<td>51</td>
<td>1.5E-10</td>
<td>6</td>
<td>5.3E-15</td>
</tr>
<tr>
<td>0.001</td>
<td>9</td>
<td>1.9E-15</td>
<td>141</td>
<td>6.8E-10</td>
<td>142</td>
<td>6.7E-10</td>
<td>8</td>
<td>5.3E-15</td>
</tr>
<tr>
<td>0.0001</td>
<td>10</td>
<td>4.5E-15</td>
<td>388</td>
<td>2.4E-09</td>
<td>389</td>
<td>2.4E-09</td>
<td>9</td>
<td>1.2E-14</td>
</tr>
<tr>
<td>0</td>
<td>26</td>
<td>5.0E-09</td>
<td>5822</td>
<td>5.8E-05</td>
<td>5823</td>
<td>5.8E-05</td>
<td>25</td>
<td>9.5E-09</td>
</tr>
<tr>
<td></td>
<td>m = 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>5.1E-15</td>
<td>6</td>
<td>1.31E-14</td>
<td>6</td>
<td>1.45E-14</td>
<td>5</td>
<td>4.3E-15</td>
</tr>
<tr>
<td>0.2</td>
<td>5</td>
<td>4.4E-15</td>
<td>11</td>
<td>2.6E-12</td>
<td>11</td>
<td>5.2E-12</td>
<td>4</td>
<td>6.6E-15</td>
</tr>
<tr>
<td>0.1</td>
<td>6</td>
<td>2.3E-15</td>
<td>16</td>
<td>2.9E-11</td>
<td>17</td>
<td>1.4E-11</td>
<td>5</td>
<td>5.9E-15</td>
</tr>
<tr>
<td>0.01</td>
<td>7</td>
<td>4.4E-15</td>
<td>50</td>
<td>1.7E-10</td>
<td>51</td>
<td>1.5E-10</td>
<td>6</td>
<td>5.3E-15</td>
</tr>
<tr>
<td>0.001</td>
<td>9</td>
<td>4.9E-15</td>
<td>141</td>
<td>6.8E-10</td>
<td>142</td>
<td>6.7E-10</td>
<td>8</td>
<td>5.3E-15</td>
</tr>
<tr>
<td>0.0001</td>
<td>10</td>
<td>5.4E-15</td>
<td>388</td>
<td>2.4E-09</td>
<td>389</td>
<td>2.4E-09</td>
<td>9</td>
<td>1.2E-14</td>
</tr>
<tr>
<td>0</td>
<td>26</td>
<td>2.2E-09</td>
<td>5798</td>
<td>5.8E-05</td>
<td>5799</td>
<td>5.8E-05</td>
<td>25</td>
<td>2.4E-09</td>
</tr>
</tbody>
</table>

(c) for \(j = i, \ldots, m \), set

\[
a_{i,j} = a_{i,j} \left(\frac{1/2 - \alpha - s_1}{s_2} \right), \quad a_{j,i} = a_{i,j}.
\]

The matrix \(A \) obtained in this way is symmetric, nonnegative and such that

\[
Ae = (1/2 - \alpha)e,
\]

where \(e \) is the vector having all the entries equal to 1. Thus the spectral radius of \(A \) is \(1/2 - \alpha \), and \(r(Q^{-1/2}AQ^{-1/2}) = r(A) = \rho(A) = 1/2 - \alpha \). If \(\alpha = 0 \), it holds that \(r(A) = 1/2 \) and \(\rho(X^+ A) = 1 \); thus, the hypothesis of Theorem 3.2 are not satisfied. Small values of \(\alpha \) provide very critical test problems.

For this example, since \(Q = I \) and \(A \) is normal with \(\|A\|_2 = 1 \), the maximal solution is given by the matrix

\[
X^+ = \frac{1}{2} \left(I + (I - 4A^*A)^{1/2} \right).
\]

For the stopping condition of all the tested algorithms we have chosen \(\epsilon = 10^{-11} \) when \(\alpha > 0 \), and \(\epsilon = 10^{-8} \) when \(\alpha = 0 \). In fact, in the singular case when \(\alpha = 0 \) a smaller value of \(\epsilon \) does not provide a significantly different relative error of the computed approximation.

Table 1 reports, for different values of the size \(m \) and of the parameter \(\alpha \), the number of iterations needed to satisfy the stopping conditions and the relative error \(\|\bar{X}_+ - X_+\|_\infty/\|X_+\|_\infty \), where \(\bar{X}_+ \) is the approximation provided by Algorithms...
Table 2. Example 5.2: CPU time

<table>
<thead>
<tr>
<th>α</th>
<th>CR</th>
<th>FPI</th>
<th>IF-FPI</th>
<th>NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>0.2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>0.001</td>
<td>0.01</td>
<td>0.09</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.01</td>
<td>0.25</td>
<td>0.25</td>
<td>0.09</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
<td>3.50</td>
<td>3.59</td>
<td>0.21</td>
</tr>
</tbody>
</table>

$m = 20$

| α | 0.4 | 0.04 | 0.02 | 0.04 | 0.19 |
|---|---|---|---|---|
| 0.2 | 0.05 | 0.04 | 0.05 | 0.26 |
| 0.1 | 0.05 | 0.06 | 0.09 | 0.32 |
| 0.01 | 0.05 | 0.20 | 0.27 | 0.38 |
| 0.001 | 0.08 | 0.54 | 0.75 | 0.51 |
| 0.0001 | 0.08 | 1.45 | 2.03 | 0.57 |
| 0 | 0.23 | 20.00 | 30.18 | 1.50 |

$m = 40$

| α | 0.4 | 0.24 | 0.15 | 0.20 | 1.51 |
|---|---|---|---|---|
| 0.2 | 0.29 | 0.30 | 0.40 | 2.03 |
| 0.1 | 0.34 | 0.42 | 0.64 | 2.53 |
| 0.01 | 0.41 | 1.35 | 1.86 | 3.00 |
| 0.001 | 0.53 | 3.70 | 5.18 | 4.03 |
| 0.0001 | 0.61 | 10.38 | 14.14 | 4.64 |
| 0 | 1.41 | 143.26 | 208.34 | 11.92 |

$m = 80$

Example 5.3. This example is taken from [15] and concerns equation (1.2). Here

$$A = \begin{bmatrix} 50 & 20 \\ 10 & 60 \end{bmatrix}, \quad Q = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}.$$

For the stopping condition of all the algorithms we have chosen $\epsilon = 10^{-11}$. The cyclic reduction (Algorithm 4.1) needs 9 iterations to reach the required accuracy, while Algorithm 4.2 needs 426 iterations. The residual error of the approximation provided by Algorithm 4.1 is $2.3 \cdot 10^{-15}$, while residual error of the approximation provided by Algorithm 4.2 is $9.1 \cdot 10^{-11}$.

Acknowledgments

The author wishes to thank an anonymous referee, whose remarks have improved the whole presentation of the paper.
REFERENCES

Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa, Italy
E-mail address: meini@dm.unipi.it