The irreducibility of some level 1 Hecke polynomials

Authors:
D. W. Farmer and K. James

Journal:
Math. Comp. **71** (2002), 1263-1270

MSC (2000):
Primary 11F11

DOI:
https://doi.org/10.1090/S0025-5718-01-01375-8

Published electronically:
June 22, 2001

MathSciNet review:
1898755

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be the characteristic polynomial of the Hecke operator acting on the space of level 1 cusp forms . We show that is irreducible and has full Galois group over for and , prime.

**[A]***T. Apostol*, Modular functions and Dirichlet series in number theory, GTM 41, Springer-Verlag, (1990). MR**90j:11001****[B]***K. Buzzard*, On the eigenvalues of the Hecke operator , J. Number Theory**57**(1996), no. 1, 130-132. MR**96m:11033****[Ch]***P. Chiu*, Transforms, finite fields, and fast multiplication, Math. Mag.**63**(1990), no. 5, 330-336. MR**93c:11113****[Co]***H. Cohen*, A course in computational algebraic number theory, Springer-Verlag. (1993). MR**94i:11105****[CF]***J.B. Conrey*and*D.W. Farmer*, Hecke operators and the nonvanishing of -functions, Topics in number theory (University Park, PA, 1997), 143-150, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999. MR**2000f:11055****[CFW]***J.B. Conrey*,*D.W. Farmer*, and*P.J. Wallace*, Factoring Hecke polynomials modulo a prime, Pacific J. Math.**196**(2000), 123-130. CMP**2001:01****[HM]***H. Hida*and*Y. Maeda*, Non-abelian base change for totally real fields, Pacific J. Math., special issue (1997), 189-217. MR**99f:11068****[JO]***K. James*and*K. Ono*, A note on the irreducibility of Hecke polynomials. J. Number Theory 73 (1998), no. 2, 527-532. MR**2000a:11063****[Ko]***N. Koblitz*, Introduction to elliptic curves and modular forms, second edition, GTM 97, Springer-Verlag, (1993). MR**94a:11078****[KZ]***W. Kohnen*and*D. Zagier*, Values of -series of modular forms at the center of the critical strip, Invent. Math.**64**(1981), no. 2, 175-198. MR**83b:10029****[M]***J. L. Massey*, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory.**vol IT-15**(1969), no. 1, 122-127. MR**39:3887****[W]***D. H. Wiedemann*, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory.**vol IT-32**(1986), no. 1, 54-62. MR**87g:11166**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11F11

Retrieve articles in all journals with MSC (2000): 11F11

Additional Information

**D. W. Farmer**

Affiliation:
Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837

Email:
farmer@bucknell.edu

**K. James**

Affiliation:
Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-0975

Email:
kevja@clemson.edu

DOI:
https://doi.org/10.1090/S0025-5718-01-01375-8

Received by editor(s):
January 6, 2000

Received by editor(s) in revised form:
September 4, 2000

Published electronically:
June 22, 2001

Additional Notes:
The research of the first author was supported in part by the American Institute of Mathematics. We thank the referee for many helpful comments

Article copyright:
© Copyright 2001
American Mathematical Society