Computation of class numbers of quadratic number fields

Author:
Stéphane Louboutin

Journal:
Math. Comp. **71** (2002), 1735-1743

MSC (2000):
Primary 11R11, 11R29, 11R21, 11Y35

Published electronically:
November 21, 2001

MathSciNet review:
1933052

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers of imaginary abelian number fields.

**[Coh]**Henri Cohen,*A course in computational algebraic number theory*, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR**1228206****[Dav]**Harold Davenport,*Multiplicative number theory*, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR**606931****[Lou1]**Stéphane Louboutin,*𝐿-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field*, Math. Comp.**59**(1992), no. 199, 213–230. MR**1134735**, 10.1090/S0025-5718-1992-1134735-6**[Lou2]**Stéphane Louboutin,*Computation of relative class numbers of CM-fields*, Math. Comp.**66**(1997), no. 219, 1185–1194. MR**1422790**, 10.1090/S0025-5718-97-00863-6**[Lou3]**Stéphane Louboutin,*Computation of relative class numbers of imaginary abelian number fields*, Experiment. Math.**7**(1998), no. 4, 293–303. MR**1678103****[Lou4]**Stéphane Louboutin,*Computation of relative class numbers of CM-fields by using Hecke 𝐿-functions*, Math. Comp.**69**(2000), no. 229, 371–393. MR**1648395**, 10.1090/S0025-5718-99-01096-0**[Lou5]**S. Louboutin.

Computation of and of relative class numbers of CM-fields.*Nagoya Math. J.***161**(2001), 171-191. CMP**2001:09****[MoWi]**R. A. Mollin and H. C. Williams,*Computation of the class number of a real quadratic field*, Utilitas Math.**41**(1992), 259–308. MR**1162532****[ScWa]**René Schoof and Lawrence C. Washington,*Quintic polynomials and real cyclotomic fields with large class numbers*, Math. Comp.**50**(1988), no. 182, 543–556. MR**929552**, 10.1090/S0025-5718-1988-0929552-2**[StWi]**A. J. Stephens and H. C. Williams,*Computation of real quadratic fields with class number one*, Math. Comp.**51**(1988), no. 184, 809–824. MR**958644**, 10.1090/S0025-5718-1988-0958644-7**[WiBr]**H. C. Williams and J. Broere,*A computational technique for evaluating 𝐿(1,𝜒) and the class number of a real quadratic field*, Math. Comp.**30**(1976), no. 136, 887–893. MR**0414522**, 10.1090/S0025-5718-1976-0414522-5

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11R11,
11R29,
11R21,
11Y35

Retrieve articles in all journals with MSC (2000): 11R11, 11R29, 11R21, 11Y35

Additional Information

**Stéphane Louboutin**

Affiliation:
Institut de Mathématiques de Luminy, UPR 906, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France

Email:
loubouti@iml.univ-mrs.fr

DOI:
https://doi.org/10.1090/S0025-5718-01-01367-9

Keywords:
Quadratic number field,
class number,
Dirichlet $L$-function,
relative class number.

Received by editor(s):
March 29, 2000

Received by editor(s) in revised form:
November 27, 2000

Published electronically:
November 21, 2001

Article copyright:
© Copyright 2001
American Mathematical Society