Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of class numbers of quadratic number fields


Author: Stéphane Louboutin
Journal: Math. Comp. 71 (2002), 1735-1743
MSC (2000): Primary 11R11, 11R29, 11R21, 11Y35
DOI: https://doi.org/10.1090/S0025-5718-01-01367-9
Published electronically: November 21, 2001
MathSciNet review: 1933052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers of imaginary abelian number fields.


References [Enhancements On Off] (What's this?)

  • [Coh] H. Cohen.
    A Course in Computational Algebraic Number Theory.
    Springer-Verlag, Grad. Texts Math. 138, 1993. MR 94i:11105
  • [Dav] H. Davenport.
    Multiplicative Number Theory, The functional Equation of the $L$-Functions.
    Springer-Verlag, Grad. Texts Math. 74 (1980), Chapter 9. MR 82m:10001
  • [Lou1] S. Louboutin.
    $L$-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field.
    Math. Comp. 59 (1992), 213-230. MR 92k:11128
  • [Lou2] S. Louboutin.
    Computation of relative class numbers of CM-fields.
    Math. Comp. 66 (1997), 173-184. MR 97k:11157
  • [Lou3] S. Louboutin.
    Computation of relative class numbers of imaginary abelian number fields.
    Experimental Math. 7 (1998), 293-303. MR 2000c:11207
  • [Lou4] S. Louboutin.
    Computation of relative class numbers of CM-fields by using Hecke $L$-functions.
    Math. Comp. 69 (2000), 371-393. MR 2000i:11172
  • [Lou5] S. Louboutin.
    Computation of $L(0,\chi )$ and of relative class numbers of CM-fields.
    Nagoya Math. J. 161 (2001), 171-191. CMP 2001:09
  • [MoWi] R. A. Mollin and H. C. Williams.
    Computation of the class number of a real quadratic field.
    Utilitas Math. 41 (1992), 259-308. MR 93d:11134
  • [ScWa] R. Schoof and L. C. Washington.
    Quintic polynomials and real cyclotomic fields with large class numbers.
    Math. Comp. 50 (1988), 543-556. MR 89h:11067b
  • [StWi] A. J. Stephens and H. C. Williams.
    Computation of real quadratic fields with class number one.
    Math. Comp. 51 (1988), 809-824. MR 90b:11106
  • [WiBr] H. C. Williams and J. Broere.
    A computational technique for evaluating $L(1,\chi )$ and the class number of a real quadratic field.
    Math. Comp. 30 (1976), 887-893. MR 54:2623

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R11, 11R29, 11R21, 11Y35

Retrieve articles in all journals with MSC (2000): 11R11, 11R29, 11R21, 11Y35


Additional Information

Stéphane Louboutin
Affiliation: Institut de Mathématiques de Luminy, UPR 906, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
Email: loubouti@iml.univ-mrs.fr

DOI: https://doi.org/10.1090/S0025-5718-01-01367-9
Keywords: Quadratic number field, class number, Dirichlet $L$-function, relative class number.
Received by editor(s): March 29, 2000
Received by editor(s) in revised form: November 27, 2000
Published electronically: November 21, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society