Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Symbolic Hamburger-Noether expressions of plane curves and applications to AG codes


Authors: A. Campillo and J. I. Farrán
Journal: Math. Comp. 71 (2002), 1759-1780
MSC (2000): Primary 14Q05; Secondary 11T71
DOI: https://doi.org/10.1090/S0025-5718-01-01390-4
Published electronically: December 4, 2001
MathSciNet review: 1933054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider some practical applications of the symbolic Hamburger-Noether expressions for plane curves, which are introduced as a symbolic version of the so-called Hamburger-Noether expansions. More precisely, we give and develop in symbolic terms algorithms to compute the resolution tree of a plane curve (and the adjunction divisor, in particular), rational parametrizations for the branches of such a curve, special adjoints with assigned conditions (connected with different problems, like the so-called Brill-Noether algorithm), and the Weierstrass semigroup at $P$ together with functions for each value in this semigroup, provided $P$ is a rational branch of a singular plane model for the curve. Some other computational problems related to algebraic curves over perfect fields can be treated symbolically by means of such expressions, but we deal just with those connected with the effective construction and decoding of algebraic geometry codes.


References [Enhancements On Off] (What's this?)

  • 1. A. Campillo, ``Algebroid curves in positive characteristic", Lecture Notes in Math., vol. 813, Springer-Verlag (1980). MR 82h:14001
  • 2. A. Campillo and J.I. Farrán, ``Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models", Finite Fields and their Applications 6, pp. 71-92 (2000). MR 2001a:14026
  • 3. E. Casas-Alvero, ``Infinitely near imposed singularities and singularities of polar curves", Math. Annalen 287, pp. 429-454 (1990). MR 91h:14002
  • 4. E. Casas-Alvero, ``Singularities of plane curves", London Math. Soc. Lecture Notes Series 276, Cambridge University Press (2000). CMP 2001:01
  • 5. D. Duval, ``Rational Puiseux expansions", Comp. Math. 70, pp. 119-154 (1989). MR 90c:14001
  • 6. F. Enriques and O. Chisini, ``Teoria geometrica delle equazioni e delle funzioni algebriche", Bologna (1918).
  • 7. J.I. Farrán and Ch. Lossen, ``brnoeth.lib", A SINGULAR 2.0 library for the Brill-Noether algorithm, Weierstrass semigroups and AG codes (2001). Available via http://www.singular. uni-kl.de/.
  • 8. G.L. Feng and T.R.N. Rao, ``Decoding algebraic-geometric codes up to the designed minimum distance", IEEE Trans. Inform. Theory 39, pp. 37-45 (1993). MR 93m:94031
  • 9. V.D. Goppa, ``Codes on algebraic curves", Soviet. Math. Dokl. 24 (1), pp. 170-172 (1981). MR 82k:94017
  • 10. V.D. Goppa, ``Algebraic-geometric codes", Math. USSR Izv. 21, pp. 75-91 (1983). MR 84g:94011
  • 11. D. Gorenstein, ``An arithmetic theory of adjoint plane curves", Trans. Amer. Math. Soc. 72, pp. 414-436 (1952). MR 14:198h
  • 12. G.-M. Greuel, G. Pfister and H. Schönemann, `` SINGULAR 2.0", A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2001). Available via http://www.singular.uni-kl.de/.
  • 13. G. Haché, ``Construction effective des codes géométriques", Ph.D. thesis, Univ. Paris 6 (1996).
  • 14. G. Haché, ``Computation in algebraic function fields for effective construction of algebraic-geometric codes", Lecture Notes in Computer Science vol. 948, pp. 262-278 (1995). MR 98c:94030
  • 15. G. Haché and D. Le Brigand, ``Effective construction of Algebraic Geometry codes", IEEE Trans. Inform. Theory 41, pp. 1615-1628 (1995). MR 97g:94037
  • 16. J.P. Hansen and H. Stichtenoth, ``Group codes on certain algebraic curves with many rational points", AAECC 1, pp. 67-77 (1990). MR 96e:94023
  • 17. R. Hartshorne, ``Algebraic Geometry", Graduate Texts in Math., vol. 52, Springer-Verlag (1977). MR 57:3116
  • 18. T. Høholdt and R. Pellikaan, ``On the decoding of algebraic-geometric codes", IEEE Trans. Inform. Theory 41, pp. 1589-1614 (1995). MR 97a:94008
  • 19. M.D. Huang and D. Ierardi, ``Efficient algorithms for Riemann-Roch problem and for addition in the jacobian of a curve", Proceedings 32nd Annual Symposium on Foundations of Computer Sciences, pp. 678-687, IEEE Comput. Soc. Press (1991).
  • 20. C. Kirfel and R. Pellikaan, ``The minimum distance of codes in an array coming from telescopic semigroups", IEEE Trans. Inform. Theory 41, pp. 1720-1732 (1995). MR 97e:94015
  • 21. D. Le Brigand and J.J. Risler, ``Algorithme de Brill-Noether et codes de Goppa", Bull. Soc. Math. France 116, pp. 231-253 (1988). MR 89k:14040
  • 22. J. Lipman, ``On complete ideals in regular local rings", Algebraic Geometry and Commutative Algebra in honour of M. Nagata, pp. 203-231 (1987). MR 90g:14003
  • 23. H. Matsumura, ``Commutative ring theory", Cambridge University Press, Cambridge (1986). MR 88h:13001
  • 24. M. Rybowicz, ``Sur le calcul des places et des anneaux d'entiers d'un corps de fonctions algébriques", Ph.D. thesis, Limoges (1990).
  • 25. M.A. Tsfasman and S.G. Vladut, ``Algebraic-geometric codes", Math. and its Appl., vol. 58, Kluwer Academic Pub., Amsterdam (1991). MR 93i:94023

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 14Q05, 11T71

Retrieve articles in all journals with MSC (2000): 14Q05, 11T71


Additional Information

A. Campillo
Affiliation: Departamento de Algebra, Geometría y Topología, Universidad de Valladolid, Spain
Email: campillo@agt.uva.es

J. I. Farrán
Affiliation: Departamento de Matemática Aplicada a la Ingeniería, Universidad de Valladolid, Spain
Email: ignfar@eis.uva.es

DOI: https://doi.org/10.1090/S0025-5718-01-01390-4
Keywords: Algebraic curves, singular plane models, desingularization, symbolic Hamburger-Noether expressions, adjoints, virtual passing conditions, Weierstrass semigroups, AG codes
Received by editor(s): October 13, 1999
Received by editor(s) in revised form: December 26, 2000
Published electronically: December 4, 2001
Additional Notes: Both authors are partially supported by DIGICYT PB97-0471.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society