Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Equilibrium schemes for scalar conservation laws with stiff sources


Authors: Ramaz Botchorishvili, Benoit Perthame and Alexis Vasseur
Journal: Math. Comp. 72 (2003), 131-157
MSC (2000): Primary 65M06, 65M12, 35L65
Published electronically: November 20, 2001
MathSciNet review: 1933816
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a simple model case of stiff source terms in hyperbolic conservation laws, namely, the case of scalar conservation laws with a zeroth order source with low regularity. It is well known that a direct treatment of the source term by finite volume schemes gives unsatisfactory results for both the reduced CFL condition and refined meshes required because of the lack of accuracy on equilibrium states. The source term should be taken into account in the upwinding and discretized at the nodes of the grid. In order to solve numerically the problem, we introduce a so-called equilibrium schemes with the properties that (i) the maximum principle holds true; (ii) discrete entropy inequalities are satisfied; (iii) steady state solutions of the problem are maintained. One of the difficulties in studying the convergence is that there are no $BV$ estimates for this problem. We therefore introduce a kinetic interpretation of upwinding taking into account the source terms. Based on the kinetic formulation we give a new convergence proof that only uses property (ii) in order to ensure desired compactness framework for a family of approximate solutions and that relies on minimal assumptions. The computational efficiency of our equilibrium schemes is demonstrated by numerical tests that show that, in comparison with an usual upwind scheme, the corresponding equilibrium version is far more accurate. Furthermore, numerical computations show that equilibrium schemes enable us to treat efficiently the sources with singularities and oscillating coefficients.


References [Enhancements On Off] (What's this?)

  • 1. Bermudez A., Dervieux A., Desideri J-A., Vazquez M.E., Upwind schemes for two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. Methods Appl. Mech. Engrg., 155(1998) 49-72. MR 99b:76060
  • 2. Bouchut F., Perthame B. Kruzkov's estimates for scalar conservation laws revisited, Trans. A.M.S. 350(7) (1998) 2847-2870. MR 98m:65156
  • 3. Brenier Y., Résolution d'équations d'évolution quasilinéaires en dimensions N d'espace à l'aide d'équations linéaires en dimensions N+1, J. Diff. Eq. 50(3) (1982) 375-390. MR 85f:35117
  • 4. Chen G.-Q., Levermore C.D., Liu T.P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 48(6) (1995) 787-830. MR 95h:35133
  • 5. Coquel F., Perthame B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Num. Anal. 35(6) (1998) 2223-2249. MR 2000a:76129
  • 6. DiPerna R.J., Measure valued solutions to conservation laws, Arch. Rat. Mech. Anal. 88 (1985) 223-270. MR 86g:35121
  • 7. Engquist B., Osher S., Stable and entropy satisfying approximations for transonic flow calculations, Math. Comp. 34 (1980) 45-75. MR 81b:65082
  • 8. Eymard R., Gallouët T., Herbin R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B 16 (1) (1995) 1-14. MR 96m:35202
  • 9. Gosse L., Leroux A.-Y., A well-balanced scheme designed for inhomogeneous scalar conservation laws, C. R. Acad. Sc., Paris, Sér. I Math. 323 (1996) 543-546. MR 97i:35112
  • 10. Gosse L., Localization effects and measure source terms in numerical schemes for balance laws, Preprint.
  • 11. Greenberg J. M., Leroux A.-Y., Baraille R., Noussair A., Analysis and approximation of conservation laws with source terms, SIAM J. Numer. Anal. 34 (5)(1997) 1980-2007. MR 98k:65049
  • 12. Giga Y., Miyakawa T., A kinetic construction of global solutions of first-order quasilinear equations, Duke Math. J. 50 (1983) 505-515. MR 85g:35017
  • 13. Kruzkov S.N., Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order, Dokl. Akad. Nauk. SSSR 187(1) (1970) 29-32; English trans, Soviet Math. Dokl. 10 (1969). MR 40:3046
  • 14. Kuznetsov N.N., Finite difference schemes for multidimensional first order quasilinear equation in classes of discontinuous functions, in: ``Probl. Math. Phys. Vych. Mat.''. Moscow: Nauka (1977) 181-194. MR 80b:65121
  • 15. J.O. Langseth, A. Tveito and R. Winther, On the convergence of operator splitting applied to conservation laws with source terms, SIAM J. Num. Anal. 33 (1996) 843-863. MR 97b:65106
  • 16. Lax P., Shock waves and entropy, in: ``Contributions to Nonlinear Functional Analysis." E.H. Zarantonello, ed. New York: Academic Press (1971) 603-634. MR 52:14677
  • 17. Leveque R., Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zurich, Birkhauser (1992). MR 92m:65106
  • 18. Lions P.L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994) 169-191. MR 94d:35100
  • 19. Natalini R., Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49 (1996) 795-823. MR 97c:35131
  • 20. Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. P. et Appl. 77 (1998) 1055-1064. MR 2000e:35141
  • 21. Perthame B., Tzavaras A., Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal. 155 (2000) 1-48. MR 2001h:74038
  • 22. Russo G., personal communication.
  • 23. Sanders R., On the convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp., 40 (161), (1983) 91-106. MR 84a:65075
  • 24. Szepessy A., Convergence of a streamline diffusion finite element method for conservation law with boundary conditions, RAIRO Model. Math. et Anal. Num. 25 (1991) 749-782. MR 92g:65115
  • 25. Vasseur A., Time regularity for the system of isentropic gas dynamics with $\gamma=3$, Comm. in P.D.E. 24 (1999) 1987-1997. MR 2000i:35171
  • 26. Vazquez-Cendon M.E., Improved treatement of source terms in upwind schemes for shallow water equations in channels with irregular geometry, J.Comput.Phys., 148(2) (1999) 497-526. MR 99i:76102

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65M06, 65M12, 35L65

Retrieve articles in all journals with MSC (2000): 65M06, 65M12, 35L65


Additional Information

Ramaz Botchorishvili
Affiliation: VIAM, Tbilissi State University, 2 University Street, 380043 Tbilissi, Georgia
Email: rdboch@viam.hepi.edu.ge

Benoit Perthame
Affiliation: INRIA, M3N, domaine de Voluceau, BP 105, F78153 Le Chesnay
Address at time of publication: ENS, DMA, 45, rue d’Ulm, F75230 Paris cédex 05, France
Email: benoit.perthame@ens.fr

Alexis Vasseur
Affiliation: Laboratoire J.A. Dieudonné, UMR 6621, Université Nice-Sophia Antipolis, Parc Valrose, F-06108 Nice Cedex 02, France
Email: vasseur@math3.unice.fr

DOI: http://dx.doi.org/10.1090/S0025-5718-01-01371-0
PII: S 0025-5718(01)01371-0
Keywords: Hyperbolic conservation laws, kinetic formulation, stiff source terms, upwind schemes, convergence
Received by editor(s): March 29, 2000
Received by editor(s) in revised form: January 3, 2001
Published electronically: November 20, 2001
Article copyright: © Copyright 2001 American Mathematical Society