Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

The convergence of shooting methods for singular boundary value problems


Authors: Othmar Koch and Ewa B. Weinmüller
Journal: Math. Comp. 72 (2003), 289-305
MSC (2000): Primary 65L10
Published electronically: December 5, 2001
MathSciNet review: 1933822
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the convergence properties of single and multiple shooting when applied to singular boundary value problems. Particular attention is paid to the well-posedness of the process. It is shown that boundary value problems can be solved efficiently when a high order integrator for the associated singular initial value problems is available. Moreover, convergence results for a perturbed Newton iteration are discussed.


References [Enhancements On Off] (What's this?)

  • 1. Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Classics in Applied Mathematics, vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. Corrected reprint of the 1988 original. MR 1351005
  • 2. W. AUZINGER, O. KOCH, P. KOFLER, AND E. WEINMÜLLER, The application of shooting to singular boundary value problems, Techn. Rep. Nr. 126/99, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technology, Austria, 1999.
    Available at http://fsmat.at/~othmar/research.html.
  • 3. E. BADRALEXE AND A. FREEMAN, Eigenvalue equation for a general periodic potential and its multipole expansion solution, Phys. Rev. B, 37 (1988), pp. 1067-1084.
  • 4. Louis Bauer, Edward L. Reiss, and Herbert B. Keller, Axisymmetric buckling of hollow spheres and hemispheres, Comm. Pure Appl. Math. 23 (1970), 529–568. MR 0278605
  • 5. T. CARR AND T. ERNEUX, Understanding the bifurcation to traveling waves in a class-b laser using a degenerate Ginzburg-Landau equation, Phys. Rev. A, 50 (1994), pp. 4219-4227.
  • 6. C. Y. Chan and Y. C. Hon, A constructive solution for a generalized Thomas-Fermi theory of ionized atoms, Quart. Appl. Math. 45 (1987), no. 3, 591–599. MR 910465
  • 7. M. DRMOTA, R. SCHEIDL, H. TROGER, AND E. WEINMÜLLER, On the imperfection sensitivity of complete spherical shells, Comp. Mech., 2 (1987), pp. 63-74.
  • 8. Riccardo Fazio, A novel approach to the numerical solution of boundary value problems on infinite intervals, SIAM J. Numer. Anal. 33 (1996), no. 4, 1473–1483. MR 1403554, 10.1137/S0036142993252042
  • 9. Reinhard Frank, The method of iterated defect-correction and its application to two-point boundary value problems. I, Numer. Math. 25 (1975/76), no. 4, 409–419. MR 0445846
  • 10. R. Frank, The method of iterated defect-correction and its application to two-point boundary value problems. II, Numer. Math. 27 (1976/77), no. 4, 407–420. MR 0445847
  • 11. R. FRANK AND C. ÜBERHUBER, Iterated Defect Correction for Runge-Kutta methods, Techn. Rep. Nr. 14/75, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technolgy, Austria, 1975.
  • 12. F. FROMMLET AND E. WEINMÜLLER, Asymptotic error expansions for singular boundary value problems, Math. Models Methods Appl. Sci., 11 (2001), pp. 71-85. CMP 2001:09
  • 13. M. Hermann and D. Kaiser, Shooting methods for two-point BVPs with partially separated endconditions, Z. Angew. Math. Mech. 75 (1995), no. 9, 651–668 (English, with English and German summaries). MR 1354386, 10.1002/zamm.19950750902
  • 14. Frank R. de Hoog and Richard Weiss, Difference methods for boundary value problems with a singularity of the first kind, SIAM J. Numer. Anal. 13 (1976), no. 5, 775–813. MR 0440931
  • 15. -, The application of linear multistep methods to singular initial value problems, Math. Comp., 31 (1977), pp. 676-690.
  • 16. Frank R. de Hoog and Richard Weiss, Collocation methods for singular boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 1, 198–217. MR 0468203
  • 17. Frank de Hoog and Richard Weiss, The application of Runge-Kutta schemes to singular initial value problems, Math. Comp. 44 (1985), no. 169, 93–103. MR 771033, 10.1090/S0025-5718-1985-0771033-0
  • 18. Herbert B. Keller, Numerical methods for two-point boundary-value problems, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968. MR 0230476
  • 19. Herbert B. Keller, Numerical solution of two point boundary value problems, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. Regional Conference Series in Applied Mathematics, No. 24. MR 0433897
  • 20. O. KOCH, P. KOFLER, AND E. WEINMÜLLER, Analysis of singular initial and terminal value problems, Techn. Rep. Nr. 125/99, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technology, Austria, 1999.
    Available at http://fsmat.at/~othmar/research.html.
  • 21. Othmar Koch, Peter Kofler, and Ewa B. Weinmüller, The implicit Euler method for the numerical solution of singular initial value problems, Appl. Numer. Math. 34 (2000), no. 2-3, 231–252. Auckland numerical ordinary differential equations (Auckland, 1998). MR 1770426, 10.1016/S0168-9274(99)00130-0
  • 22. O. KOCH AND E. WEINMÜLLER, Iterated Defect Correction for the solution of singular initial value problems.
    To appear in SIAM J. Numer. Anal.
  • 23. P. KOFLER, Theorie und numerische Lösung singulärer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit der Singularität erster Art, Ph. D. Thesis, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technology, Austria, 1998.
  • 24. P. KOSMOL, Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben, Teubner, Stuttgart, 1989.
  • 25. P. Lancaster, Error analysis for the Newton-Raphson method, Numer. Math. 9 (1966), 55–68. MR 0210315
  • 26. Xiyu Liu, A note on the Sturmian theorem for singular boundary value problems, J. Math. Anal. Appl. 237 (1999), no. 1, 393–403. MR 1708181, 10.1006/jmaa.1999.6429
  • 27. R. M¨ARZ AND E. WEINMÜLLER, Solvability of boundary value problems for systems of singular differential-algebraic equations, SIAM J. Math. Anal., 24 (1993), pp. 200-215.
  • 28. Gerald Moore, Computation and parametrization of periodic and connecting orbits, IMA J. Numer. Anal. 15 (1995), no. 2, 245–263. MR 1323740, 10.1093/imanum/15.2.245
  • 29. M. R. Osborne, The stabilized march is stable, SIAM J. Numer. Anal. 16 (1979), no. 6, 923–933. MR 551316, 10.1137/0716068
  • 30. Seymour V. Parter, Myron L. Stein, and Paul R. Stein, On the multiplicity of solutions of a differential equation arising in chemical reactor theory, Studies in Appl. Math. 54 (1975), no. 4, 293–314. MR 0451744
  • 31. Hans J. Stetter, Numerik für Informatiker, R. Oldenbourg Verlag, Munich-Vienna, 1976. Computergerechte numerische Verfahren. Eine Einführung. MR 0413417
  • 32. Richard Weiss, The convergence of shooting methods, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 470–475. MR 0334537
  • 33. Helmut Werner and Herbert Arndt, Gewöhnliche Differentialgleichungen, Hochschultext. [University Textbooks], Springer-Verlag, Berlin, 1986 (German). Eine Einführung in Theorie und Praxis. [An introduction to theory and practice]. MR 869817

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65L10

Retrieve articles in all journals with MSC (2000): 65L10


Additional Information

Othmar Koch
Affiliation: Department of Applied Mathematics and Numerical Analysis, University of Technology Vienna, Wiedner Hauptstrasse 8–10, A-1040 Vienna, Austria
Email: othmar@fsmat.at

Ewa B. Weinmüller
Affiliation: Department of Applied Mathematics and Numerical Analysis, University of Technology Vienna, Wiedner Hauptstrasse 8–10, A-1040 Vienna, Austria
Email: e.weinmueller@tuwien.ac.at

DOI: https://doi.org/10.1090/S0025-5718-01-01407-7
Received by editor(s): February 10, 2000
Received by editor(s) in revised form: January 3, 2001
Published electronically: December 5, 2001
Additional Notes: This project was supported by the Austrian Research Fund (FWF) grant P-12507-MAT
Article copyright: © Copyright 2001 American Mathematical Society