Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Quadratic finite element approximation of the Signorini problem

Authors: Z. Belhachmi and F. Ben Belgacem
Journal: Math. Comp. 72 (2003), 83-104
MSC (2000): Primary 35J85, 73J05
Published electronically: December 5, 2001
MathSciNet review: 1933319
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Applying high order finite elements to unilateral contact variational inequalities may provide more accurate computed solutions, compared with linear finite elements. Up to now, there was no significant progress in the mathematical study of their performances. The main question is involved with the modeling of the nonpenetration Signorini condition on the discrete solution along the contact region. In this work we describe two nonconforming quadratic finite element approximations of the Poisson-Signorini problem, responding to the crucial practical concern of easy implementation, and we present the numerical analysis of their efficiency. By means of Falk's Lemma we prove optimal and quasi-optimal convergence rates according to the regularity of the exact solution.

References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • 2. M. Benassi and R. E. White, Parallel numerical solution of variational inequalities, SIAM J. Numer. Anal. 31 (1994), no. 3, 813–830. MR 1275115,
  • 3. F. Ben Belgacem. Numerical Simulation of some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Method, SIAM J. Numer. Anal., 37: 1198-1216, 2000. CMP 2000:12
  • 4. F. Ben Belgacem. Mixed Finite Element Methods for Signorini's Problem, submitted.
  • 5. F. Ben Belgacem ans S. C. Brenner. Some Nonstandard Finite Element Estimates with Applications to 3D Poisson and Signorini Problems, Electronic Transactions in Numerical Analysis, 12:134-148, 2001.
  • 6. Faker Ben Belgacem, Patrick Hild, and Patrick Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Math. Models Methods Appl. Sci. 9 (1999), no. 2, 287–303. MR 1674556,
  • 7. C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991) Pitman Res. Notes Math. Ser., vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 13–51. MR 1268898
  • 8. Franco Brezzi, William W. Hager, and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. MR 0448949,
  • 9. Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • 10. P. Coorevits, P. Hild, K. Lhalouani and T. Sassi. Mixed Finite Element Method for Unilateral Problems: Convergence Analysis and Numerical Studies, Math. of Comp., posted on May 21, 2001, PII: S0025-5718(01)01318-7 (to appear in print).
  • 11. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 (French). Travaux et Recherches Mathématiques, No. 21. MR 0464857
  • 12. Richard S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comput. 28 (1974), 963–971. MR 0391502,
  • 13. R. Glowinski, J.-L. Lions and R. Trémolières. Analyse numériques des inéquations variationnelles, Tome 1, Dunod, 1976. MR 58:31697
  • 14. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
  • 15. J. Haslinger and I. Hlavácek. Contact between Elastic Bodies -2.Finite Element Analysis, Aplikace Matematiky, 26: 263-290, 1981. MR 83c:73052
  • 16. P. G. Ciarlet and J. L. Lions (eds.), Handbook of numerical analysis. Vol. IV, Handbook of Numerical Analysis, IV, North-Holland, Amsterdam, 1996. Finite element methods. Part 2. Numerical methods for solids. Part 2. MR 1422502
  • 17. P. Hild. Problèmes de contact unilatéral et maillages incompatibles, Thèse de l'Université Paul Sabatier, Toulouse 3, 1998.
  • 18. N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, vol. 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR 961258
  • 19. David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
  • 20. K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems, East-West J. Numer. Math. 7 (1999), no. 1, 23–30. MR 1683934
  • 21. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
  • 22. Mohand Moussaoui and Khadidja Khodja, Régularité des solutions d’un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan, Comm. Partial Differential Equations 17 (1992), no. 5-6, 805–826 (French, with English and French summaries). MR 1177293,
  • 23. Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR 0443377
  • 24. Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems, Oxford University Press, 1993.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35J85, 73J05

Retrieve articles in all journals with MSC (2000): 35J85, 73J05

Additional Information

Z. Belhachmi
Affiliation: Méthodes Mathématiques pour l’Analyse des Systèmes, CNRS-UPRES-A-7035, Université de Metz , ISGMP, Batiment A, Ile du Saulcy, 57045 Metz, France

F. Ben Belgacem
Affiliation: Mathématiques pour l’Industrie et la Physique, Unité Mixte de Recherche CNRS–UPS–INSAT–UT1 (UMR 5640), Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France

Keywords: Variational inequalities, Signorini problem, quadratic finite element, error estimates
Received by editor(s): April 20, 2000
Received by editor(s) in revised form: April 10, 2001
Published electronically: December 5, 2001
Article copyright: © Copyright 2001 American Mathematical Society