An analysis of nonconforming multi-grid methods, leading to an improved method for the Morley element

Author:
Rob Stevenson

Journal:
Math. Comp. **72** (2003), 55-81

MSC (2000):
Primary 65N55, 65N30, 65F10

DOI:
https://doi.org/10.1090/S0025-5718-02-01410-2

Published electronically:
May 1, 2002

MathSciNet review:
1933814

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We recall and slightly refine the convergence theory for nonconforming multi-grid methods for symmetric positive definite problems developed by Bramble, Pasciak and Xu. We derive new results to verify the regularity and approximation assumption, and the assumption on the smoother. From the analysis it will appear that most efficient multi-grid methods can be expected for fully regular problems, and for prolongations for which the energy norm of the iterated prolongations is uniformly bounded.

Guided by these observations, we develop a new multi-grid method for the biharmonic equation discretized with Morley finite elements, or equivalently, for the Stokes equations discretized with the -nonconforming pair. Numerical results show that the new method is superior to standard ones.

**[BDH99]**D. Braess, M. Dryja, and W. Hackbusch.

A multigrid method for nonconforming FE-discretisations with applications to non-matching grids.*Computing*, 63(1):1-25, 1999. MR**2000h:65048****[BP92]**J.H. Bramble and J.E. Pasciak.

The analysis of smoothers for multigrid algorithms.*Math. Comp.*, 58:467-488, 1992. MR**92f:65146****[BPX91]**J.H. Bramble, J.E. Pasciak, and J. Xu.

The analysis of multigrid algorithms with nonnested spaces or inherited quadratic forms.*Math. Comp.*, 56(193):1-34, 1991. MR**91h:65159****[Bre89]**S.C. Brenner.

An optimal-order nonconforming multigrid method for the biharmonic equation.*SIAM J. Numer. Anal*, 26(5):1124-1138, 1989. MR**89f:65119****[Bre90]**S.C. Brenner.

A nonconforming multigrid method for the stationary Stokes equations.*Math. Comp.*, 55(192):411-437, 1990. MR**91d:65167****[Bre99]**S.C. Brenner.

Convergence of nonconforming multigrid methods without full elliptic regularity.*Math. Comp.*, 68(225):25-53, 1999. MR**99c:65229****[BS94]**S.C. Brenner and L.R. Scott.*The Mathematical Theory of Finite Element Methods*.

Springer-Verlag, New York, 1994. MR**95f:65001****[Che97]**Z. Chen.

The analysis of intergrid transfer operators and multigrid methods for nonconforming finite elements.*ETNA*, 5:78-96, 1997. MR**99c:65230****[Che99]**Z. Chen.

On the convergence of Galerkin-multigrid methods for nonconforming finite elements.*East-West J. Numer. Math.*, 7(2):79-104, 1999. MR**2000c:65116****[Cia78]**P.G. Ciarlet.*The finite element method for elliptic problems*.

North-Holland, Amsterdam, 1978. MR**58:25001****[CO98]**Z. Chen and P. Oswald.

Multigrid and multilevel methods for nonconforming rotated Q1 elements.*Math. Comp.*, 67:667-693, 1998. MR**98g:65118****[FM90]**R.S. Falk and M.E. Morley.

Equivalence of finite element methods for problems in elasticity.*SIAM J. Numer. Anal.*, 27(6):1486-1505, 1990. MR**91i:65117****[GR86]**V. Girault and P.A. Raviart.*Finite element methods for Navier-Stokes equations, Theory and Algorithms*.

Springer-Verlag, Berlin, 1986. MR**88b:65129****[Hac85]**W. Hackbusch.*Multi-Grid Methods and Applications*.

Springer-Verlag, Berlin, 1985.**[MMB87]**J. Mandel, S. McCormick, and R. Bank.

Variational multigrid theory.

In S.F. McCormick, editor,*Multigrid Methods*, chapter 5. SIAM, Philadelphia, Pennsylvania, 1987, pp. 131-177. MR**89m:65004****[Osw92]**P. Oswald.

On a hierarchical basis multilevel method with nonconforming P1 elements.*Numer. Math.*, 62:189-212, 1992. MR**93b:65059****[Osw97]**P. Oswald.

Intergrid transfer operators and multilevel preconditioners for nonconforming discretizations.*Appl. Numer. Math*, 23, 1997, 139-158. MR**98g:65110****[Ste99]**R.P. Stevenson.

Nonconforming finite elements and the cascadic multi-grid method.

Technical Report 1120, University of Utrecht, November 1999.

Revised version, January 2001, to appear in*Numer. Math.***[Ste00]**R.P. Stevenson.

A direct solver for the gradient equation.

Technical Report 1163, University of Utrecht, October 2000.

to appear in Math. Comp.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
65N55,
65N30,
65F10

Retrieve articles in all journals with MSC (2000): 65N55, 65N30, 65F10

Additional Information

**Rob Stevenson**

Affiliation:
Department of Mathematics, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, The Netherlands

Email:
stevenso@math.uu.nl

DOI:
https://doi.org/10.1090/S0025-5718-02-01410-2

Keywords:
Multi-grid method,
nonconforming finite elements,
biharmonic equation,
Morley finite element space,
Stokes equations

Received by editor(s):
November 23, 1998

Received by editor(s) in revised form:
January 23, 2001

Published electronically:
May 1, 2002

Article copyright:
© Copyright 2002
American Mathematical Society