Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

New amicable pairs of type $(2,2)$ and type $(3,2)$


Author: Patrick J. Costello
Journal: Math. Comp. 72 (2003), 489-497
MSC (2000): Primary 11A25
Published electronically: May 1, 2002
MathSciNet review: 1933833
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A UBASIC computer program was developed to implement a method of te Riele for finding amicable pairs of type $(2,2)$. Hundreds of new pairs were found, including a new largest $(2,2)$ pair and several ``daughter'', ``granddaughter'', and ``great granddaughter'' pairs.


References [Enhancements On Off] (What's this?)

  • 1. L. Adleman, C. Pomerance and R. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1983), 173-206. MR 84e:10008
  • 2. S. Battiato, ``Uber die Produktion von 37803 neuen befreundeten Zahlenpaaren mit der Brudermethode,'' Bergische Universitat Gesamthochschule Wuppertal, June 1988.
  • 3. W. Borho and H. Hoffmann, Breeding amicable numbers in abundance, Math. Comp. 46 (1986), 281-293. MR 87c:11003
  • 4. P. Costello, Amicable pairs of the form $(i,1)$, Math. Comp. 56 (1991), 859-865. MR 91k:11009
  • 5. E. Escott, Amicable numbers, Scripta Math. 12 (1946), 61-72. MR 8:135a
  • 6. L. Euler, De Numeris Amicabilibus, Leonhardi Euleri Opera Omnia, Ser. I, Vol. 2, Teubner, Leipzig and Berlin, 1915, pp. 63-162.
  • 7. M. Garcia, New amicable pairs, Scripta Mathematica 23 (1957), 167-171. MR 20:5158
  • 8. E. Lee, Amicable numbers and the bilinear Diophantine equation, Math. Comp. 22 (1968), 181-187. MR 37:142
  • 9. E. Lee and J. Madachy, The history and discovery of amicable numbers - Part 2, J. Recreational Math. 5 (1972), 153-173. MR 56:5165
  • 10. H. Lenstra, Jr., Factoring integers with elliptic curves, Ann. Math. 126 (1987), 649-673. MR 89g:11125
  • 11. T. Mason, On amicable numbers and their generalizations, Amer. Math. Monthly 28 (1921), 195-200.
  • 12. H. J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984), 219-223. MR 85d:11107
  • 13. H. J. J. te Riele, ``Table of 1869 new amicable pairs generated from 1575 mother pairs,'' Report NN 27/82, Math. Centre., Amsterdam, Oct. 1982.
  • 14. D. Woods, privately communicated to H. te Riele on June 29, 1982 and appears in te Riele's list ``Tables of Amicable Pairs between $10^{10}$ and $10^{52}$,'' Note NM-N8603, Centre for Mathematics and Computer Science, Amsterdam, September 1986.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11A25

Retrieve articles in all journals with MSC (2000): 11A25


Additional Information

Patrick J. Costello
Affiliation: Department of Mathematics and Statistics, Eastern Kentucky University, 521 Lancaster Ave., Richmond, Kentucky 40475-3102
Email: pat.costello@eku.edu

DOI: http://dx.doi.org/10.1090/S0025-5718-02-01414-X
PII: S 0025-5718(02)01414-X
Keywords: Amicable pair
Received by editor(s): May 24, 2000
Received by editor(s) in revised form: March 29, 2001
Published electronically: May 1, 2002
Article copyright: © Copyright 2002 American Mathematical Society