Normal cones of monomial primes
Authors:
Reinhold Hübl and Irena Swanson
Journal:
Math. Comp. 72 (2003), 459475
MSC (2000):
Primary 1304, 13C14
Published electronically:
June 6, 2002
MathSciNet review:
1933831
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We explicitly calculate the normal cones of all monomial primes which define the curves of the form , where . All of these normal cones are reduced and CohenMacaulay, and their reduction numbers are independent of the reduction. These monomial primes are new examples of integrally closed ideals for which the product with the maximal homogeneous ideal is also integrally closed. Substantial use was made of the computer algebra packages Maple and Macaulay2.
 [CZ]
Teresa
Cortadellas and Santiago
Zarzuela, On the depth of the fiber cone of filtrations, J.
Algebra 198 (1997), no. 2, 428–445. MR 1489906
(98k:13005), http://dx.doi.org/10.1006/jabr.1997.7147
 [CN]
R.
C. Cowsik and M.
V. Nori, On the fibres of blowing up, J. Indian Math. Soc.
(N.S.) 40 (1976), no. 14, 217–222 (1977). MR 0572990
(58 #28011)
 [EM]
David
Eisenbud and Barry
Mazur, Evolutions, symbolic squares, and Fitting ideals, J.
Reine Angew. Math. 488 (1997), 189–201. MR 1465370
(98h:13035)
 [GTZ]
Patrizia
Gianni, Barry
Trager, and Gail
Zacharias, Gröbner bases and primary decomposition of
polynomial ideals, J. Symbolic Comput. 6 (1988),
no. 23, 149–167. Computational aspects of commutative algebra.
MR 988410
(90f:68091), http://dx.doi.org/10.1016/S07477171(88)800403
 [G]
P. Gimenez, ``Étude de la fibre spéciale de l'éclatement d'une varieté monomiale en codimension deux'', Thèse de Doctorat de Mathématiques de l'Université Joseph Fourier, Grenoble, 1993.
 [HIO]
M.
Herrmann, S.
Ikeda, and U.
Orbanz, Equimultiplicity and blowing up, SpringerVerlag,
Berlin, 1988. An algebraic study; With an appendix by B.\ Moonen. MR 954831
(89g:13012)
 [H]
Reinhold
Hübl, Evolutions and valuations associated to an ideal,
J. Reine Angew. Math. 517 (1999), 81–101. MR 1728546
(2000j:13047), http://dx.doi.org/10.1515/crll.1999.099
 [HH]
R. Hübl and C. Huneke, Fiber cones and the integral closure of ideals, Collect. Math., 52 (2001), 85100.
 [HS]
R. Hübl and I. Swanson, Discrete valuations centered on local domains, Jour. Pure Appl. Algebra, 161 (2001), 145166.
 [Hu]
Craig
Huneke, The theory of 𝑑sequences and powers of
ideals, Adv. in Math. 46 (1982), no. 3,
249–279. MR
683201 (84g:13021), http://dx.doi.org/10.1016/00018708(82)900457
 [HSa]
Craig
Huneke and Judith
D. Sally, Birational extensions in dimension two and integrally
closed ideals, J. Algebra 115 (1988), no. 2,
481–500. MR
943272 (89e:13025), http://dx.doi.org/10.1016/00218693(88)902748
 [M]
Hideyuki
Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture
Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading,
Mass., 1980. MR
575344 (82i:13003)
 [MS]
Marcel
Morales and Aron
Simis, Symbolic powers of monomial curves in 𝑃³ lying
on a quadric surface, Comm. Algebra 20 (1992),
no. 4, 1109–1121. MR 1154405
(93c:13005), http://dx.doi.org/10.1080/00927879208824394
 [P]
Dilip
P. Patil, Minimal sets of generators for the relation ideals of
certain monomial curves, Manuscripta Math. 80 (1993),
no. 3, 239–248. MR 1240646
(94h:14026), http://dx.doi.org/10.1007/BF03026549
 [PS]
Dilip
P. Patil and Balwant
Singh, Generators for the derivation modules and the relation
ideals of certain curves, Manuscripta Math. 68
(1990), no. 3, 327–335. MR 1065934
(91g:14019), http://dx.doi.org/10.1007/BF02568767
 [Sh1]
Kishor
Shah, On the CohenMacaulayness of the fiber cone of an ideal,
J. Algebra 143 (1991), no. 1, 156–172. MR 1128652
(92k:13014), http://dx.doi.org/10.1016/00218693(91)902579
 [Sh2]
Kishor
Shah, On equimultiple ideals, Math. Z. 215
(1994), no. 1, 13–24. MR 1254811
(95j:13021), http://dx.doi.org/10.1007/BF02571697
 [Va]
Wolmer
V. Vasconcelos, Arithmetic of blowup algebras, London
Mathematical Society Lecture Note Series, vol. 195, Cambridge
University Press, Cambridge, 1994. MR 1275840
(95g:13005)
 [CZ]
 T. Cortadellas and S. Zarzuela, On the depth of the fiber cone of filtrations, J. Algebra, 198 (1997), 428445. MR 98k:13005
 [CN]
 R. Cowsik and M. Nori, On the fibers of blowingup, J. Indian Math. Soc., 40 (1976), 217222. MR 58:28011
 [EM]
 D. Eisenbud and B. Mazur, Evolutions, symbolic squares and Fitting ideals, Jour. Reine Angew. Math., 488 (1997), 189201. MR 98h:13035
 [GTZ]
 P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decompositions of polynomial ideals, J. Symbolic Comput., 6 (1988), 149167. MR 90f:68091
 [G]
 P. Gimenez, ``Étude de la fibre spéciale de l'éclatement d'une varieté monomiale en codimension deux'', Thèse de Doctorat de Mathématiques de l'Université Joseph Fourier, Grenoble, 1993.
 [HIO]
 M. Herrmann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing up, SpringerVerlag, 1988. MR 89g:13012
 [H]
 R. Hübl, Evolutions and valuations associated to an ideal, Jour. Reine Angew. Math., 517 (1999), 81101. MR 2000j:13047
 [HH]
 R. Hübl and C. Huneke, Fiber cones and the integral closure of ideals, Collect. Math., 52 (2001), 85100.
 [HS]
 R. Hübl and I. Swanson, Discrete valuations centered on local domains, Jour. Pure Appl. Algebra, 161 (2001), 145166.
 [Hu]
 C. Huneke, The theory of dsequences and powers of ideals, Adv. in Math., 46 (1982), 249279. MR 84g:13021
 [HSa]
 C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra, 115 (1988), 481500. MR 89e:13025
 [M]
 H. Matsumura, Commutative Algebra, 2nd edition. Benjamin/Cummings, Reading, Ma., 1980. MR 82i:13003
 [MS]
 M. Morales and A. Simis, Symbolic powers of monomial curves in lying on a quadric surface, Comm. Algebra, 20 (1992), 11091121. MR 93c:13005
 [P]
 D. P. Patil, Minimal sets of generators for the relation ideals of certain monomial curves, Manu. Math., 80 (1993), 239248. MR 94h:14026
 [PS]
 D. P. Patil and B. Singh, Generators for the derivation modules and the relation ideals of certain curves, Manu. Math., 68 (1990), 327335. MR 91g:14019
 [Sh1]
 K. Shah, On the CohenMacaulayness of the fiber cone of an ideal, J. Algebra, 143 (1991), 156172. MR 92k:13014
 [Sh2]
 K. Shah, On equimultiple ideals, Math. Z., 215 (1994), 1324. MR 95j:13021
 [Va]
 W. Vasconcelos, Arithmetic of Blowup Algebras, London Mathematical Society Lecture Note Series 195, Cambridge University Press, 1994. MR 95g:13005
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
1304,
13C14
Retrieve articles in all journals
with MSC (2000):
1304,
13C14
Additional Information
Reinhold Hübl
Affiliation:
NWF I  Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Email:
Reinhold.Huebl@sap.com
Irena Swanson
Affiliation:
Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 880038001
Email:
iswanson@nmsu.edu
DOI:
http://dx.doi.org/10.1090/S0025571802014163
PII:
S 00255718(02)014163
Keywords:
Monomial prime,
normal cone,
CohenMacaulay,
Gorenstein
Received by editor(s):
February 22, 2000
Received by editor(s) in revised form:
February 28, 2001
Published electronically:
June 6, 2002
Additional Notes:
The first author was partially supported by a Heisenberg–Stipendium of the DFG
The second author was partially supported by the National Science Foundation.
Article copyright:
© Copyright 2002
American Mathematical Society
