Normal cones of monomial primes

Authors:
Reinhold Hübl and Irena Swanson

Journal:
Math. Comp. **72** (2003), 459-475

MSC (2000):
Primary 13-04, 13C14

Published electronically:
June 6, 2002

MathSciNet review:
1933831

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We explicitly calculate the normal cones of all monomial primes which define the curves of the form , where . All of these normal cones are reduced and Cohen-Macaulay, and their reduction numbers are independent of the reduction. These monomial primes are new examples of integrally closed ideals for which the product with the maximal homogeneous ideal is also integrally closed.

Substantial use was made of the computer algebra packages Maple and Macaulay2.

**[CZ]**Teresa Cortadellas and Santiago Zarzuela,*On the depth of the fiber cone of filtrations*, J. Algebra**198**(1997), no. 2, 428–445. MR**1489906**, 10.1006/jabr.1997.7147**[CN]**R. C. Cowsik and M. V. Nori,*On the fibres of blowing up*, J. Indian Math. Soc. (N.S.)**40**(1976), no. 1-4, 217–222 (1977). MR**0572990****[EM]**David Eisenbud and Barry Mazur,*Evolutions, symbolic squares, and Fitting ideals*, J. Reine Angew. Math.**488**(1997), 189–201. MR**1465370****[GTZ]**Patrizia Gianni, Barry Trager, and Gail Zacharias,*Gröbner bases and primary decomposition of polynomial ideals*, J. Symbolic Comput.**6**(1988), no. 2-3, 149–167. Computational aspects of commutative algebra. MR**988410**, 10.1016/S0747-7171(88)80040-3**[G]**P. Gimenez, ``Étude de la fibre spéciale de l'éclatement d'une varieté monomiale en codimension deux'', Thèse de Doctorat de Mathématiques de l'Université Joseph Fourier, Grenoble, 1993.**[HIO]**M. Herrmann, S. Ikeda, and U. Orbanz,*Equimultiplicity and blowing up*, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR**954831****[H]**Reinhold Hübl,*Evolutions and valuations associated to an ideal*, J. Reine Angew. Math.**517**(1999), 81–101. MR**1728546**, 10.1515/crll.1999.099**[HH]**R. Hübl and C. Huneke, Fiber cones and the integral closure of ideals,*Collect. Math.*,**52**(2001), 85-100.**[HS]**R. Hübl and I. Swanson, Discrete valuations centered on local domains,*Jour. Pure Appl. Algebra*,**161**(2001), 145-166.**[Hu]**Craig Huneke,*The theory of 𝑑-sequences and powers of ideals*, Adv. in Math.**46**(1982), no. 3, 249–279. MR**683201**, 10.1016/0001-8708(82)90045-7**[HSa]**Craig Huneke and Judith D. Sally,*Birational extensions in dimension two and integrally closed ideals*, J. Algebra**115**(1988), no. 2, 481–500. MR**943272**, 10.1016/0021-8693(88)90274-8**[M]**Hideyuki Matsumura,*Commutative algebra*, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR**575344****[MS]**Marcel Morales and Aron Simis,*Symbolic powers of monomial curves in 𝑃³ lying on a quadric surface*, Comm. Algebra**20**(1992), no. 4, 1109–1121. MR**1154405**, 10.1080/00927879208824394**[P]**Dilip P. Patil,*Minimal sets of generators for the relation ideals of certain monomial curves*, Manuscripta Math.**80**(1993), no. 3, 239–248. MR**1240646**, 10.1007/BF03026549**[PS]**Dilip P. Patil and Balwant Singh,*Generators for the derivation modules and the relation ideals of certain curves*, Manuscripta Math.**68**(1990), no. 3, 327–335. MR**1065934**, 10.1007/BF02568767**[Sh1]**Kishor Shah,*On the Cohen-Macaulayness of the fiber cone of an ideal*, J. Algebra**143**(1991), no. 1, 156–172. MR**1128652**, 10.1016/0021-8693(91)90257-9**[Sh2]**Kishor Shah,*On equimultiple ideals*, Math. Z.**215**(1994), no. 1, 13–24. MR**1254811**, 10.1007/BF02571697**[Va]**Wolmer V. Vasconcelos,*Arithmetic of blowup algebras*, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR**1275840**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
13-04,
13C14

Retrieve articles in all journals with MSC (2000): 13-04, 13C14

Additional Information

**Reinhold Hübl**

Affiliation:
NWF I - Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Email:
Reinhold.Huebl@sap.com

**Irena Swanson**

Affiliation:
Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-8001

Email:
iswanson@nmsu.edu

DOI:
https://doi.org/10.1090/S0025-5718-02-01416-3

Keywords:
Monomial prime,
normal cone,
Cohen-Macaulay,
Gorenstein

Received by editor(s):
February 22, 2000

Received by editor(s) in revised form:
February 28, 2001

Published electronically:
June 6, 2002

Additional Notes:
The first author was partially supported by a Heisenberg–Stipendium of the DFG

The second author was partially supported by the National Science Foundation.

Article copyright:
© Copyright 2002
American Mathematical Society