MIXED FINITE VOLUME METHODS
ON NONSTAGGERED QUADRILATERAL GRIDS
FOR ELLIPTIC PROBLEMS

SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

Abstract. We construct and analyze a mixed finite volume method on quadrilateral grids for elliptic problems written as a system of two first order PDEs in the state variable (e.g., pressure) and its flux (e.g., Darcy velocity). An important point is that no staggered grids or covolumes are used to stabilize the system. Only a single primary grid system is adopted, and the degrees of freedom are imposed on the interfaces. The approximate flux is sought in the lowest-order Raviart–Thomas space and the pressure field in the rotated-\(\mathbb{Q}^1 \) nonconforming space. Furthermore, we demonstrate that the present finite volume method can be interpreted as a rotated-\(\mathbb{Q}^1 \) nonconforming finite element method for the pressure with a simple local recovery of flux. Numerical results are presented for a variety of problems which confirm the usefulness and effectiveness of the method.

1. Introduction

Let \(\Omega \) be a bounded polygonal domain in \(\mathbb{R}^2 \) with the boundary \(\partial \Omega \). We consider the second-order elliptic boundary value problem

\[
\begin{aligned}
- \text{div}(K \nabla p) &= f & \text{in } \Omega, \\
p &= 0 & \text{on } \partial \Omega,
\end{aligned}
\]

(1.1)

where \(K = K(x) \) is a symmetric and uniformly positive definite matrix, i.e., there exist two positive constants \(c_1 \) and \(c_2 \) such that

\[
c_1 \xi^T \xi \leq \xi^T K(x) \xi \leq c_2 \xi^T \xi, \quad \forall \xi \in \mathbb{R}^2, \: x \in \Omega.
\]

Let us introduce the vector variable \(u = -K \nabla p \) and rewrite the problem (1.1) in the mixed form

\[
\begin{aligned}
u + K \nabla p &= 0, & \text{in } \Omega, \\
\text{div } u &= f, & \text{in } \Omega, \\
p &= 0, & \text{on } \partial \Omega.
\end{aligned}
\]

(1.2)

In the mathematical modeling of fluid flow in porous media, \(u \) and \(p \) represent the velocity and pressure fields, respectively. The first equation of (1.2), which
relates \(u \) and \(p \), is called Darcy’s law, and the second equation represents the conservation of mass. In the full system of equations for certain porous media problems such as transport of contaminants or tracers, these equations are coupled with the concentration equation. Since the coupling is only through the velocity variable \(u \), it is important to gain very accurate approximation for the velocity \(u \) when discretizing the full system of equations. More details about this point can be found, for example, in [18, 30].

Much effort has been made in accurate computation of the velocity variable since the late 1970’s. The mixed finite element method, which is the standard finite element method for the system (1.2), has been a very active area of research, and many finite element spaces subject to the well-known inf-sup stability condition have been developed; see, for example, [3, 4, 5, 19, 20, 21, 22, 28, 33]. On the other hand, the finite volume method has been also applied to the system (1.2) in several ways. For example, see [6, 11, 12, 25] for mixed covolume methods, and [34, 36, 38] for different approaches.

One shortcoming of some of the early mixed methods mentioned above is that they led to indefinite matrix systems when discretizing (1.2). This prevents one from applying well known iterative methods such as the conjugate-gradient method that are useful to solve the symmetric positive definite matrix system. This drawback causes severe difficulties particularly in solving the porous media problem, because one has to solve the mixed system (1.2) at every time step to obtain the approximate velocity which appears in the concentration equation (cf. [18, 30]).

A common way to remedy this situation is to make use of numerical quadratures for calculating integrals (which is adopted in [34, 36, 38]). This enables one to decouple the pressure \(p \) easily and obtain a symmetric positive definite matrix system for \(p \) only which is very similar to cell-centered finite difference methods. Another way is to introduce the Lagrange multipliers on the edges of the mesh to ensure the continuity of normal components of the velocity variable [22]. In this fashion the velocity and the pressure finite element spaces have no continuity constraints at all, and thus both variables can be eliminated to obtain a symmetric positive definite matrix system which only involves the Lagrange multipliers. It can be shown that this matrix system is equivalent to some nonconforming finite element method for the original problem (1.1). For the interested readers we refer to [11, 17, 27].

On the other hand, Courbet and Croisille [17], seeking to avoid the inf-sup condition, considered the lowest-order Raviart–Thomas space for the velocity and the \(P1 \) nonconforming element for the pressure, and discretized the mixed system (1.2) in the case of \(K = I \), the identity matrix, by the finite volume (box) method, using only a single triangular grid system. It was shown that a symmetric positive definite system in the unknown \(p_h \) can be obtained with the flux recovered by a simple formula. It was later extended and analyzed in a more effective way by Chou and Tang [15] to general tensor-coefficient problems. Furthermore, following the previous successful and consistent viewpoint [11, 12, 16] that any given finite volume method should be related to a close finite element method, they provided in [14, 15], among other things, a new framework showing equivalence between mixed finite volume methods and nonconforming Galerkin methods with a cheap local recovery of the fluxes. The significance of this is that, unlike lower order mixed finite element methods, mixed finite volume methods can decouple the pressure...
from the flux and compute it basically cost free. However, all these results pertain to the triangular grid case, where one has the convenient area coordinates to use.

In the mixed finite volume literature, it is common to introduce a secondary grid or dual grid of covolumes to enforce equality between the numbers of equations and unknowns. Thus it is rather surprising that there exist finite volume methods such as those in achieving stability using a single grid system while violating the inf-sup condition on the pressure-velocity spaces. Let us now list some features of the mixed finite volume scheme on nonstaggered triangular grids:

- The discretized system gives rise to a mixed system in which the pressure decouples easily and the velocity can be recovered by a simple local formula.
- An accurate approximation for the velocity can be computed from the non-conforming approximation of the pressure in a direct manner, with no help from Lagrange multipliers. (This is a restatement of the first item from a different angle.)
- The nonconforming Galerkin method for the pressure requires fewer degrees of freedom than the mixed finite element method.
- The pressure solution can be obtained by a fast solver such as the multigrid algorithm (cf.).
- The data structure is simple, since only one mesh system is used.
- The mixed finite volume scheme satisfies discrete mass conservation locally, as all the mixed methods mentioned above do.

In view of the fact that many practical hydrocodes (e.g.,) have been written using conservation laws over irregular polygonal control volumes such as triangles and quadrilaterals, it is useful to ask if one can construct and analyze the corresponding finite volume method on rectangular and/or quadrilateral grids that shares the above features. The answer turns out to be positive. The first step involves a correct choice of pressure and velocity spaces: we will make use of the lowest-order Raviart–Thomas space for the velocity variable and the rotated- nonconforming element for the pressure. The second step involves an effective way of decoupling the mixed discrete system: we show that the velocity approximation can be easily eliminated to yield the rotated- nonconforming method for the pressure only, and that can be recovered from in a simple manner.

It is sometimes believed that the use of finite volume methods is mainly in hyperbolic conservation laws and there is no need to use them for elliptic problems. For this reason, we mention that in an important book , McCormick has elucidated, among other things, the reasons why methods of the finite volume element type are natural and effective on composite grids in conjunction with the multilevel FAC iterative solver. In particular, they play useful roles in approximating elliptic problems.

The rest of the paper is organized as follows. In the next section we introduce some notations about the grids and define the relevant function spaces. In Section 3, we describe the mixed finite volume method on quadrilateral and rectangular grids, and we establish optimal error estimates for it in Section 4. Finally, in Section 5, some numerical results are presented to illustrate the efficiency of our method.
2. Preliminaries

Let Q_h be a partition of Ω into convex quadrilaterals whose diameters are less than or equal to h. The intersection, if any, of any two (closed) quadrilaterals in the partition is either a common edge or a common vertex. Let

- $NQ =$ Number of elements of Q_h,
- $NE_i =$ Number of interior edges of Q_h,
- $NE_b =$ Number of boundary edges of Q_h,
- $NE =$ $NE_i + NE_b$, the total number of edges of Q_h.

Let $\dot{x} = (\hat{x}, \hat{y})$ and $x = (x, y)$. We use the unit square $\hat{Q} = [0, 1] \times [0, 1]$ as the reference element (cf. Figure 2.1) in the $\hat{x}\hat{y}$-plane with the vertices

- $\hat{x}_1 = (0, 0)$,
- $\hat{x}_2 = (1, 0)$,
- $\hat{x}_3 = (1, 1)$,
- $\hat{x}_4 = (0, 1)$.

Let Q be a convex quadrilateral with the vertices x_i arranged counterclockwise. Then there exists a unique invertible bilinear transformation F_Q which maps \hat{Q} onto Q and satisfies

$$x_i = F_Q(\hat{x}_i), \quad i = 1, 2, 3, 4.$$

In fact, it is given by

$$x = F_Q(\hat{x}) = x_1 + x_{21}\hat{x} + x_{41}\hat{y} + g\hat{x}\hat{y},$$

where we set

$$x_{ij} = x_i - x_j, \quad g = x_{12} + x_{34}.$$

The Jacobian matrix J_Q of F_Q is given by

$$J_Q = \begin{pmatrix} \frac{\partial x}{\partial \hat{x}} & \frac{\partial x}{\partial \hat{y}} \\ \frac{\partial x}{\partial \hat{x}} & \frac{\partial x}{\partial \hat{y}} \end{pmatrix} = (x_{21} + g\hat{y}, x_{41} + g\hat{x}).$$

Denote by S_i the subtriangle of Q with vertices x_{i-1}, x_i and x_{i+1} ($x_0 = x_4$). Let h_Q be the diameter of Q and $\rho_Q = 2\min_{1 \leq i \leq 4}\{\text{diameter of circle inscribed in } S_i\}$.

Figure 2.1. The bilinear mapping $F_Q : \hat{Q} \rightarrow Q$
Throughout the paper we assume a regular family of partitions $Q = \{Q_h\}$, i.e., there exists a positive constant σ independent of h such that
\begin{equation}
\frac{h_Q}{\rho_Q} \leq \sigma, \quad \forall Q \in Q_h, \forall Q_h \in Q.
\end{equation}

The following upper bounds for J_Q and J_Q^{-1} can be found, e.g., in [23]:
\begin{align}
\|J_Q\|_{\infty, Q} & \leq Ch_Q, & \|J_Q^{-1}\|_{\infty, Q} & \leq Ch_Q^{-1}, \\
|J_Q|_{\infty, Q} & \leq Ch^2_Q, & |J_Q^{-1}|_{\infty, Q} & \leq Ch^{-2}_Q,
\end{align}
where $\|M\|_{\infty, K} := \sup_{x \in K} \|M(x)\|$, the supremum of the spectral norm of the matrix function M. Hereafter C will denote a generic positive constant which is independent of h. It may have different values in different places, especially when used in proofs.

Simple calculation shows that the determinant $J_Q = \det J_Q$ is a linear function of \hat{x} and \hat{y}:
\begin{equation}
J_Q(\hat{x}, \hat{y}) = \alpha + \beta \hat{x} + \gamma \hat{y},
\end{equation}
where
\begin{equation}
\alpha = \det(x_{21}, x_{41}), \quad \beta = \det(x_{21}, g), \quad \gamma = \det(g, x_{41}).
\end{equation}

We shall assume throughout the paper that each quadrilateral in the family of partitions is almost a parallelogram: $\|g\| = O(h^2_Q)$. In other words,
\begin{equation}
The distance between the midpoints of the two diagonals of Q is $O(h^2_Q)$.
\end{equation}
This condition is easily satisfied if the partitions are obtained by symmetric refinement of quadrilaterals via bisection on edges.

It is well known that (shape) regularity is equivalent to the minimum angle condition for partitions with triangular elements. For the quadrilateral case, it is shown in [10] that the shape regularity condition (2.3) is equivalent to the following two conditions: the uniform boundedness of h_Q/h'_Q, the ratios of diameter to shortest edge h'_Q, and the existence of a positive constant s independent of h such that $|\cos(\theta_Q)| \leq s < 1$ for all Q with θ_Q any interior angle of Q. A similar result can be found in [37], which states that a certain quasi-regularity condition plus the almost parallelogram condition (2.8) imply the above two conditions. A detailed clarification on the relations between various regularity and uniformity conditions on quadrilateral grids can be found in [10].

The Piola transformation P_Q transforms a vector-valued function on \hat{Q} to one on Q by
\begin{equation}
v = P_Q \hat{v} = \frac{1}{J} J \hat{v} \circ F^{-1},
\end{equation}
where we drop the subscript Q for brevity. This transformation preserves the $H(\text{div})$ space on the reference element and has the following well known properties (cf. [34, 39]): If we let $\hat{q} = q \circ F$, then
\begin{align}
\int_Q \nabla p : \nabla v \, dx dy &= \int_{\hat{Q}} \nabla \hat{p} : \nabla \hat{v} \, d\hat{x} d\hat{y}, \\
\text{div} v &= \frac{1}{J} \text{div} \hat{v}.
\end{align}
We need the following lemma for error analysis.
Lemma 2.1. Let v and \hat{v} be related by (2.9). For regular partitions, there exist positive constants C_1 and C_2 such that for every $v \in L^2(Q)$ we have
\begin{equation}
C_1 \|v\|_{0,Q} \leq \|\hat{v}\|_{0,\hat{Q}} \leq C_2 \|v\|_{0,Q}.
\end{equation}

If the regular partition satisfies the almost a parallelogram condition (2.8), then for every $v \in H^1(Q)$,
\begin{equation}
|v|_{1,Q} \leq C_1 h^{-1} \|\hat{v}\|_{1,\hat{Q}}, \quad |\hat{v}|_{1,\hat{Q}} \leq C_2 h \|v\|_{1,Q}.
\end{equation}

Proof. The proof can be easily done by using the formulae (2.2), (2.7) and the bounds (2.4), (2.5).

Now we introduce the function spaces
\begin{equation}
V = H(\text{div},\Omega) = \{v \in L^2(\Omega) : \text{div} v \in L^2(\Omega)\},
\end{equation}
\begin{equation}
H^s(\text{div},\Omega) = \{v \in L^2(\Omega) : \text{div} v \in H^s(\Omega)\}.
\end{equation}

To define the lowest-order Raviart–Thomas space V_h on Q_h, let $V_h(\hat{Q})$ denote the local space on the reference element \hat{Q}:
\begin{equation}
V_h(\hat{Q}) = \{\hat{v} : \hat{v} = (a + b\hat{x}, c + d\hat{y})\}, \quad a, b, c, d \in \mathbb{R}.
\end{equation}

Then the local space $V_h(Q)$ on each quadrilateral Q is defined to be
\begin{equation}
V_h(Q) = \{v = \mathcal{P}_Q \hat{v} : \hat{v} \in V_h(\hat{Q})\},
\end{equation}
and the global space V_h is defined by
\begin{equation}
V_h = \{v \in V : v|_Q \in V_h(Q), \forall Q \in Q_h\}.
\end{equation}

Furthermore, the discrete space satisfies the condition that if n_i denotes the unit outward normal to the edge e_i of Q, then
\begin{equation}
|e_i|v \cdot n_i = \hat{v} \cdot \hat{n}_i, \quad i = 1, 2, 3, 4,
\end{equation}
where \hat{n}_i is the unit exterior normal to \hat{e}_i. Note that every $v \in V_h$ has continuous normal components across the edges of Q_h, which are constant due to (2.18). We refer to [34, 39] for further details.

The Raviart–Thomas projection $\Pi_h : V \to V_h$ is defined as follows: Let us define $\hat{\Pi}$ on \hat{Q} to be
\begin{equation}
\int_{\hat{e}} \hat{\Pi} \hat{v} \cdot \hat{n} ds = \int_{\hat{e}} \hat{\hat{v}} \cdot \hat{n} ds, \quad \forall \text{ edges } \hat{e} \text{ of } \hat{Q},
\end{equation}
and then set
\begin{equation}
\Pi_Q v = \mathcal{P}_Q (\hat{\Pi} \hat{v}), \quad \forall v \in H^1(Q),
\end{equation}
where $\mathcal{P}_Q \hat{v} = v$. Finally, we define
\begin{equation}
\Pi_h v|_Q = \Pi_Q v.
\end{equation}

Some well known properties [34, 39] of Π_h, necessary to derive error estimates, are summarized in the following lemma.

Lemma 2.2. If $w \in L^2(\Omega)$ is a piecewise constant function on Q_h, then
\begin{equation}
(\text{div} (u - \Pi_h u), w) = 0, \quad \forall u \in V.
\end{equation}
Also, the following estimates are valid:

\begin{align}
(2.23) \quad \|u - \Pi_h u\|_0 & \leq Ch \|u\|_1, \quad \forall u \in H^1(\Omega), \\
(2.24) \quad \|\text{div}(u - \Pi_h u)\|_0 & \leq Ch \|\text{div} u\|_1, \quad \forall u \in H^1(\text{div}; \Omega).
\end{align}

The pressure space N_h is chosen to be the rotated-$Q1$ nonconforming finite element space given by

\begin{equation}
N_h = \left\{ p : p|_Q \in N_h(Q), \forall Q \in Q_h; \text{ and if } Q_1, Q_2 \text{ share an edge } e, \right. \\
\left. \quad \text{then } \int_e p|_{\partial Q_1} \, ds = \int_e p|_{\partial Q_2} \, ds; \text{ and } \int_{\partial Q \cap \partial \Omega} p|_{\partial \Omega} \, ds = 0 \right\},
\end{equation}

where the local spaces are defined by

\begin{align}
(2.25) \quad N_h(\hat{Q}) &= \text{span} \{1, \hat{x}, \hat{y}, \hat{x}^2 - \hat{y}^2\}, \\
(2.26) \quad N_h(Q) &= \{ p = \hat{p} \circ F^{-1}_Q : \hat{p} \in N_h(\hat{Q}) \}.
\end{align}

The degrees of freedom for N_h are given by $\left\{ \frac{1}{\|e\|_1} \int_e p_h \, ds : e \text{ is an edge of } Q_h \right\}$.

Lemma 2.3. We have

\[\nabla N_h(\hat{Q}) = \{ \hat{\psi} \in V_h(\hat{Q}) : \text{div} \hat{\psi} = 0 \} . \]

Proof. The proof is obvious, since we have $\nabla N_h(\hat{Q}) = \{(a + c\hat{x}, b - c\hat{y})\}$. \hfill \Box

Finally, we define \bar{f}_h to be the function given by $\bar{f}_h|_Q = \frac{1}{|Q|} \int_Q f$. Note that only when Q is a rectangle is $\bar{f}_h|_Q$ the local average of f on Q.

Lemma 2.4. Assume that $f \in H^1(\Omega)$, $\forall Q \in Q_h$. Then

\[\|f - \bar{f}_h\|_0 \leq Ch(\sum_Q \|f\|_{1, Q}^2)^{1/2}. \]

Proof. We first note that

\[\|f - \bar{f}_h\|_{0, Q} \leq Ch \|\bar{f} - \frac{1}{J_Q} \int_Q J_Q \bar{f} \, d\hat{x}' \, d\hat{y}'\|_{0, Q}. \]

Writing J_Q in the integrand as

\[J_Q(\hat{x}', \hat{y}') = J_Q(\hat{x}, \hat{y}) + \beta(\hat{x}' - \hat{x}) + \gamma(\hat{y}' - \hat{y}), \]

we have

\[\bar{f} - \frac{1}{J_Q} \int_Q J_Q \bar{f} \, d\hat{x}' \, d\hat{y}' = \left[\bar{f}(\hat{x}, \hat{y}) - \int_Q \bar{f}(\hat{x}', \hat{y}') \, d\hat{x}' \, d\hat{y}' \right] \]

\[+ \int_Q \left[\frac{\beta(\hat{x} - \hat{x}') + \gamma(\hat{y} - \hat{y}')}{J_Q(\hat{x}, \hat{y})} \bar{f}(\hat{x}', \hat{y}') \, d\hat{x}' \, d\hat{y}' \right] \equiv I_1 + I_2 \]

Clearly, I_1 is bounded by $C\|\bar{f}\|_{1, Q}$. Now by (2.7) one has $|\beta| + |\gamma| = O(h^3_Q)$, and the bound for I_2 follows easily. Combining these results gives

\[\|f - \bar{f}_h\|_{0, Q} \leq Ch(\|\bar{f}\|_{1, Q} + h\|\bar{f}\|_{0, Q}) \leq Ch\|f\|_{1, Q}. \]

Summing over Q completes the proof. \hfill \Box
3. Mixed finite volume methods
on rectangular and quadrilateral grids

In this section we first introduce a finite volume method (FVM) on rectangular grids and relate it to a nonconforming finite element method with local recovery of the flux. The ideas are then generalized to quadrilateral grids.

3.1. FVM on rectangular grids. To define the finite volume method on rectangular grids, we begin by integrating the mixed system (1.2) over each element \(Q \in Q_h \):

\[
\int_Q (u_h + K\nabla p_h) = 0, \quad \int_Q \text{div} u_h = \int_Q f.
\]

This gives rise to a total of \(3N_Q \) equations in \(2NE_i + NE_b \) unknowns. It is easy to see that this is a square matrix system on triangular grids (cf. [17]), since we have

\[
3N_Q = \sum_Q \sum_{\partial Q} 1 = 2 \sum_{e \in E_i} 1 + \sum_{e \in E_b} 1 = 2NE_i + NE_b
\]

However, on rectangular and quadrilateral grids we have \(4N_Q = 2NE_i + NE_b \), which implies that \(N_Q \) additional equations, or equivalently, one additional equation per element, is required.

To resolve this problem we propose the following scheme: Find \((u_h, p_h) \in V_h \times N_h\) which satisfies, on every element \(Q \in Q_h \),

\[
\begin{cases}
\int_Q (u_h + K\nabla p_h) \cdot \nabla \chi = 0, & \forall \chi \in N_h(Q), \\
\int_Q \text{div} u_h = \int_Q f.
\end{cases}
\]

(3.2)

Note that this gives the desired number of equations, since we have \(\dim N_h(Q) = 3 \). We also see that any solution \((u_h, p_h)\) of the system satisfies \(\nabla p_h \in N_h(Q) \), since \(\nabla N_h(Q) \) contains the constant vectors \((1, 0), (0, 1)\).

Now let us show how the velocity \(u_h \) is eliminated and the system reduces to the nonconforming finite element method for \(p_h \) only. Noticing that \(u_h \cdot n \) is constant on the edges and \(\chi \in N_h \) has common averages on the interior edges with vanishing boundary averages, we obtain, for every \(\chi \in N_h \),

\[
\sum_{Q \in Q_h} \int_Q u_h \cdot \nabla \chi = \sum_{Q \in Q_h} \left[\int_{\partial Q} (u_h \cdot n) \chi - \int_Q \text{div} u_h \chi \right] = -\int_{\Omega} \tilde{f}_h \chi,
\]

where we used the equality \(\text{div} u_h = \tilde{f}_h \). By virtue of (3.2), it follows immediately that

\[
\sum_{Q \in Q_h} \int_Q K\nabla p_h \cdot \nabla \chi = \int_{\Omega} \tilde{f}_h \chi, \quad \forall \chi \in N_h.
\]

(3.4)

This is a rotated-Q1 nonconforming finite element method for the problem (1.1), except that the right-hand side is given by \(\tilde{f}_h \) instead of \(f \).

The velocity \(u_h \) can be computed directly from the solution \(p_h \) of (3.4) in the following manner. Let \(Q \) be an arbitrary element of \(Q_h \) with the edges \(e_i \),

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
i = 1, 2, 3, 4, and let \(\phi_i \in N_h(Q) \) be the basis function associated with the edge \(e_i \), namely, \(\frac{1}{|e_i|} \int_{e_i} \phi_j = \delta_{ij} \). Then the outflux through the edge \(e_i \) is given by

\[
|e_i| (\mathbf{u}_h \cdot \mathbf{n})|_{e_i} = \int_{Q} (\mathbf{u}_h \cdot \mathbf{n}) \phi_i = \int_{Q} \text{div}(\mathbf{u}_h \phi_i) = \int_{Q} (\text{div} \mathbf{u}_h \phi_i + \mathbf{u}_h \cdot \nabla \phi_i),
\]

from which it follows by the fact \(\text{div} \mathbf{u}_h = \bar{f}_h \) and (3.2) that

\[
|e_i| (\mathbf{u}_h \cdot \mathbf{n})|_{e_i} = \int_{Q} \bar{f}_h \phi_i - \int_{Q} K \nabla p_h \cdot \nabla \phi_i.
\]

Thus, in order to compute the outfluxes through the edges of an element \(Q \), we only need to compute the local residual of the solution \(p_h \) on \(Q \). Incidentally, we have proved the existence and uniqueness of a solution of the system (3.2), since \(f = 0 \) implies that \(p_h = 0 \) by (3.4), and that \(\mathbf{u}_h = 0 \) by (3.5).

Remark 3.1. Our argument applies equally well to triangular grids. In this case, we take \(N_h \) to be the \(P_1 \) nonconforming finite element space. In particular, since we have \(\nabla N_h = \{(1,0), (0,1)\} \), the equations (3.1) and (3.2) are identical. For more details, see [14, 17].

Remark 3.2. Let \(h_x \) and \(h_y \) denote the width and height of a rectangle \(Q \). Obviously, one can write on \(Q \)

\[
\mathbf{u}_h + K \nabla p_h \big|_Q = (a + b(x - x_Q), c + d(y - y_Q))
\]

for some constants \(a, b, c \) and \(d \). In the case of a piecewise constant scalar-valued \(K \), by taking \(\nabla \chi = (1,0), (0,1) \) and \((x,-y) \) in (3.2) and using \(\text{div}(K \nabla p_h) = 0 \), we obtain

\[
a = 0, \quad c = 0, \quad bh_x = dh_y, \quad b + d = \bar{f}_h.
\]

Hence for a square grid \((h_x = h_y) \) and scalar \(K \), one obtains the following formula for \(\mathbf{u}_h \):

\[
\mathbf{u}_h \big|_Q = -K \nabla p_h \big|_Q + \frac{\bar{f}_h}{2}(x - x_Q),
\]

where \(x_Q \) is the center of \(Q \). The same formula was derived by Chou and Tang [14] in the case of triangular grids.

3.2. FVM on Quadrilateral Grids

Next we turn to quadrilateral grids. In analogy with the rectangular case, we propose the following scheme:

\[
\begin{cases}
\int_{Q} (\mathbf{u}_h + K \nabla p_h) \cdot \nabla \chi = 0, & \forall \chi \in N_h(Q), \\
\int_{Q} \text{div} \mathbf{u}_h = \int_{Q} f.
\end{cases}
\]

Elimination of the velocity \(\mathbf{u}_h \) can be done in the same way as in the rectangular case. Since we again have by (2.11)

\[
\text{div} \mathbf{u}_h \big|_Q = \frac{1}{J_Q} \int_{Q} \text{div} \mathbf{u}_h = \frac{1}{J_Q} \int_{Q} f = \bar{f}_h \big|_Q,
\]
consequently \[3.8\] becomes
\[
\sum_{Q \in \mathcal{Q}_h} \int_{Q} \mathbf{u}_h \cdot \nabla \chi = - \int_{\Omega} \tilde{f}_h \chi, \quad \forall \chi \in N_h,
\]
which gives immediately, by \[3.7\],
\[
\sum_{Q \in \mathcal{Q}_h} \int_{Q} K \nabla p_h \cdot \nabla \chi = \int_{\Omega} \tilde{f}_h \chi, \quad \forall \chi \in N_h.
\]
Again this is a rotated-$Q1$ nonconforming finite element method for the problem \[1.1\] with a slightly modified right-hand side. Also, the velocity \mathbf{u}_h can be recovered from the solution p_h by the local residual
\[
|e_i| (\mathbf{u}_h \cdot \mathbf{n}) = \int_{Q} \tilde{f}_h \phi_i - \int_{Q} K \nabla p_h \cdot \nabla \phi_i.
\]

Remark 3.3. Our techniques can be easily extended to the mixed boundary conditions of general form
\[
\mathbf{u} \cdot \mathbf{n} = g \text{ on } \Gamma_1, \quad p = h \text{ on } \Gamma_2, \quad \Gamma_1 \cup \Gamma_2 = \partial \Omega, \quad \Gamma_1 \cap \Gamma_2 = \emptyset.
\]

4. Error estimates

In this section we derive optimal error estimates for the velocity and the pressure variable. We use the standard notations $| \cdot |_{m,Q}$ and $\| \cdot \|_{m,Q}$ for the semi and full norm of the Sobolev space $H^m(Q)$, and set
\[
|\chi|^2_{1,h} = \sum_{Q \in \mathcal{Q}_h} |\chi|^2_{1,Q}, \quad \forall \chi \in H^1(\Omega) \oplus N_h,
\]
and $|\chi|_{1,h} = (|\chi|^2_{1,h} + |\chi|^2_{1,h})^{1/2}$. We also define the bilinear form
\[
a_h(p, \chi) = \sum_{Q \in \mathcal{Q}_h} \int_{Q} K \nabla p \cdot \nabla \chi, \quad \forall p, \chi \in H^1(\Omega) \oplus N_h,
\]
where the subscript h will be dropped when both p and χ belong to $H^1(\Omega)$. To simplify notation, we shall write $| \cdot |_{m}, \| \cdot \|_{m}$ instead of $| \cdot |_{m,Q}, \| \cdot \|_{m,Q}$.

Throughout this section we assume elliptic regularity holds. First we prove the following error estimate for the pressure approximation of the finite element method \[3.8\].

Theorem 4.1. Let $f \in H^1(Q)$, $\forall Q \in \mathcal{Q}_h$, and let $p_h \in N_h$ be the solution of \[3.8\]. Then there exists a constant C independent of h such that
\[
\|p - p_h\|_0 + h|p - p_h|_{1,h} \leq C h^2 \|f\|_{1,h}.
\]

Proof. Let $\tilde{p} \in H^2(\Omega) \cap H^1_0(\Omega)$ be the solution of
\[
a(\tilde{p}, \chi) = \langle \tilde{f}_h, \chi \rangle, \quad \forall \chi \in H^1_0(\Omega).
\]

Then we can apply the standard argument of H^1 estimate and the Aubin–Nitsche technique to obtain (cf. \[3.3\])
\[
\|\tilde{p} - p_h\|_0 + h|\tilde{p} - p_h|_{1,h} \leq C h^2 \|f\|_0.
\]

Now we need to estimate $\|p - \tilde{p}\|_1$. Since we have $\int_Q (f - \tilde{f}_h) = 0$, it follows that for all $\chi \in H^1_0(\Omega)$
\[
a(p - \tilde{p}, \chi) = \langle f - \tilde{f}_h, \chi \rangle \leq C h^2 \|f\|_{1,h} |\chi|_1,
\]
where we have used Lemma 2.4. By taking \(\chi = p - \tilde{p} \) and using the Poincaré inequality, we obtain
\[
\| p - \tilde{p} \|_1 \leq Ch^2 \| f \|_{1,h}.
\]
(4.3)

The proof is completed by combining (4.2) and (4.3).

In order to derive the estimate for \(\| u - \mathbf{u}_h \|_0 \), we note that
\[
\int_Q \left[(u - \mathbf{u}_h) + \mathbf{K} \nabla (p - p_h) \right] \cdot \nabla \chi = 0, \quad \forall \chi \in N_h(Q),
\]
which, when transferred onto the reference element, becomes
\[
\int_Q \left[(\tilde{u} - \tilde{\mathbf{u}}_h) + J \mathcal{J}^{-1} \mathcal{J}^{-1} \tilde{\nabla} (\tilde{p} - \tilde{p}_h) \right] \cdot \tilde{\nabla} \tilde{\chi} = 0, \quad \forall \tilde{\chi} \in N_h(\hat{Q}).
\]
(4.4)

Since \(\text{div}(\tilde{\mathbf{u}} - \tilde{\mathbf{u}}_h) = 0 \), we may take \(\tilde{\nabla} \tilde{\chi} = \tilde{\mathbf{u}} - \tilde{\mathbf{u}}_h \) by Lemma 2.3 to obtain
\[
\| \tilde{\mathbf{u}} - \tilde{\mathbf{u}}_h \|_{0,Q} \leq \| \tilde{u} - \tilde{\mathbf{u}} \|_{0,Q} + \| \mathbf{K} \|_\infty \| J \|_{\infty,Q} \| J^{-1} \|_{\infty,Q} \| \tilde{p} - \tilde{p}_h \|_{1,Q}
\leq C(\| \tilde{u} \|_{1,\hat{Q}} + \| \tilde{p} - \tilde{p}_h \|_{1,\hat{Q}}),
\]
where we have used the upper bounds (2.4) and (2.5). Thus it follows by Lemma 2.1 that
\[
\| u - \mathbf{u}_h \|_{0,Q} \leq \| \tilde{u} - \tilde{\mathbf{u}}_h \|_{0,Q} \leq \| \tilde{u} - \tilde{\mathbf{u}} \|_{0,Q} + \| \tilde{\mathbf{u}} - \tilde{\mathbf{u}}_h \|_{0,Q}
\leq C(\| \tilde{u} \|_{1,\hat{Q}} + \| \tilde{p} - \tilde{p}_h \|_{1,\hat{Q}})
\leq C(h \| \mathbf{u} \|_{1,Q} + \| p - p_h \|_{1,Q}),
\]
which gives by Theorem 4.1
\[
\| u - \mathbf{u}_h \|_0 \leq Ch(\| \mathbf{u} \|_1 + \| f \|_{1,h}).
\]

Finally, the estimate for \(\| \text{div} \mathbf{u} - \text{div} \mathbf{u}_h \|_0 \) follows directly from Lemma 2.3, since we have \(\text{div} \mathbf{u} = f \) and \(\text{div} \mathbf{u}_h = f_h \). We summarize these results in the following theorem.

Theorem 4.2. Let \((\mathbf{u}_h, p_h)\) be the solution of the system (3.7). Then there exists a constant \(C \) independent of \(h \) such that
\[
\| u - \mathbf{u}_h \|_0 + \| \text{div} \mathbf{u} - \text{div} \mathbf{u}_h \|_0 \leq Ch(\| \mathbf{u} \|_1 + \| f \|_{1,h}),
\]
(4.5)

provided that \(p \) is in \(H^2(\Omega) \), and the \(L^2 \) function \(f \) is locally in \(H^1(Q) \), \(\forall Q \in Q_h \).

5. **Numerical Results**

To confirm the theoretical results established in the previous section, some numerical tests are carried out on the unit square \(\Omega = (0,1)^2 \), involving scalar and tensor coefficients, smooth and nonsmooth coefficients, and rectangular and quadrilateral grids. For convenience, we compute velocity error in an \(L^2 \) seminorm and pressure error in a discrete \(L^2 \) norm:
\[
\delta_u = \left\{ \sum_{Q \in Q_h} \sum_{e \in \partial Q} \left[\int_e (\mathbf{u} - \mathbf{u}_h) \cdot \mathbf{n} \, ds \right]^2 \right\}^{1/2},
\]
(5.1)
\[
\delta_p = \left[\sum_{Q \in Q_h} |Q|(p(x_Q) - p_h(x_Q))^2 \right]^{1/2},
\]
(5.2)
where the edge integrals are evaluated by the midpoint rule, and x_Q is the mass center of Q. These discrete (semi)norms are the ones defined in [14, 16], except that δ_u is defined elementwise and thus involves the interior edge integrals twice.

In all of the examples below, the exact solutions p and the coefficients K are given in explicit form, and the source terms f and the boundary conditions are determined by them. In the first three examples we partition Ω into squares of size h, whereas we consider a distorted grid in the last example (cf. Figure 5.1).

Based on the computed errors for the problems, we also report the convergence rates in Table 5, assuming that the error is of the form Ch^α. Here C and α are determined by the least squares fit to the data. One notes the superconvergence behavior of the flux at the midpoints.

Problem 1. $K = 1.0$ and $p(x, y) = x(1 - x)\sin(\pi y)$

Problem 2. $K = 1 + 10x + y$ and $p(x, y) = x(1 - x)y(1 - y)$

Problem 3. This example is the one presented in [25]:

$$K = \begin{pmatrix} \frac{14}{3} & \frac{7}{2} \\ \frac{7}{2} & \frac{9}{2} \end{pmatrix} \text{ for } 0 < x < .5, \quad \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \text{ for } .5 < x < 1,$$

and

$$p(x, y) = \begin{cases} 1 - x^3 & \text{for } 0 < x < .5, \\ \frac{2}{5}(1 - x^2) & \text{for } .5 < x < 1. \end{cases}$$

By simple calculations it is easy to see that the velocity $u = -K\nabla p$ has continuous normal components across the line of discontinuity $x = 1/2$.

Problem 4. This example is the one presented in [6, 25]:

$$K = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0.01 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

and $p(x, y) = \cos(\pi x)\cos(2\pi y)$. The geometry of the grid is shown in Figure 5.1.

![Figure 5.1. Distorted grids for Problem 4](image-url)
Table 1. Problem 1: Constant scalar coefficients

<table>
<thead>
<tr>
<th>h</th>
<th>δ_u</th>
<th>δ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>5.9935e-3</td>
<td>3.0080e-3</td>
</tr>
<tr>
<td>1/16</td>
<td>1.4992e-3</td>
<td>7.5270e-4</td>
</tr>
<tr>
<td>1/32</td>
<td>3.7483e-4</td>
<td>1.8822e-4</td>
</tr>
<tr>
<td>1/64</td>
<td>9.3711e-5</td>
<td>4.7058e-5</td>
</tr>
<tr>
<td>1/128</td>
<td>2.3428e-5</td>
<td>1.1765e-5</td>
</tr>
</tbody>
</table>

Table 2. Problem 2: Variable scalar coefficients

<table>
<thead>
<tr>
<th>h</th>
<th>δ_u</th>
<th>δ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>2.0213e-2</td>
<td>6.9621e-4</td>
</tr>
<tr>
<td>1/16</td>
<td>5.0450e-3</td>
<td>1.7362e-4</td>
</tr>
<tr>
<td>1/32</td>
<td>1.2608e-3</td>
<td>4.3377e-5</td>
</tr>
<tr>
<td>1/64</td>
<td>3.1515e-4</td>
<td>1.0843e-5</td>
</tr>
<tr>
<td>1/128</td>
<td>7.8784e-5</td>
<td>2.7105e-6</td>
</tr>
</tbody>
</table>

Table 3. Problem 3: Discontinuous tensor coefficients

<table>
<thead>
<tr>
<th>h</th>
<th>δ_u</th>
<th>δ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>1.4378e-2</td>
<td>3.0216e-3</td>
</tr>
<tr>
<td>1/16</td>
<td>3.6223e-3</td>
<td>7.5599e-4</td>
</tr>
<tr>
<td>1/32</td>
<td>9.1484e-4</td>
<td>1.8904e-4</td>
</tr>
<tr>
<td>1/64</td>
<td>2.3118e-4</td>
<td>4.7262e-5</td>
</tr>
<tr>
<td>1/128</td>
<td>5.8414e-5</td>
<td>1.1816e-5</td>
</tr>
</tbody>
</table>

Table 4. Problem 4: Distorted grids, $\beta = 60^\circ, \theta = 45^\circ$

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>δ_u</th>
<th>δ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 × 8</td>
<td>2.0878e-1</td>
<td>4.1977e-2</td>
</tr>
<tr>
<td>16 × 16</td>
<td>5.2684e-2</td>
<td>1.0989e-2</td>
</tr>
<tr>
<td>32 × 32</td>
<td>1.3526e-2</td>
<td>2.7816e-3</td>
</tr>
<tr>
<td>64 × 64</td>
<td>3.4842e-3</td>
<td>6.9757e-4</td>
</tr>
<tr>
<td>128 × 128</td>
<td>8.9701e-4</td>
<td>1.7453e-4</td>
</tr>
</tbody>
</table>

Table 5. Convergence rates: $\delta_u \leq C_u h^{\alpha_u}$ and $\delta_p \leq C_p h^{\alpha_p}$

<table>
<thead>
<tr>
<th></th>
<th>C_u</th>
<th>α_u</th>
<th>C_p</th>
<th>α_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>0.384</td>
<td>1.999</td>
<td>0.193</td>
<td>1.999</td>
</tr>
<tr>
<td>Problem 2</td>
<td>1.295</td>
<td>2.000</td>
<td>0.045</td>
<td>2.001</td>
</tr>
<tr>
<td>Problem 3</td>
<td>0.893</td>
<td>1.985</td>
<td>0.194</td>
<td>1.999</td>
</tr>
<tr>
<td>Problem 4</td>
<td>12.308</td>
<td>1.964</td>
<td>2.622</td>
<td>1.979</td>
</tr>
</tbody>
</table>
REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO 43403

E-mail address: chou@bgnet.bgsu.edu

DEPARTMENT OF MATHEMATICS, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, TAEJON, KOREA 305-701

E-mail address: dykwak@math.kaist.ac.kr

DEPARTMENT OF MATHEMATICS, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, TAEJON, KOREA 305-701

E-mail address: kky@mathx.kaist.ac.kr