Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Nyström-Clenshaw-Curtis quadrature for integral equations with discontinuous kernels


Authors: Sheon-Young Kang, Israel Koltracht and George Rawitscher
Journal: Math. Comp. 72 (2003), 729-756
MSC (2000): Primary 45B05, 45J05, 65Rxx, 65R20, 81U10
Published electronically: March 8, 2002
MathSciNet review: 1954965
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new highly accurate numerical approximation scheme based on a Gauss type Clenshaw-Curtis quadrature for Fredholm integral equations of the second kind

\begin{displaymath}x(t)+\int^{b}_{a}k(t,s)x(s)ds=y(t),\end{displaymath}

whose kernel $k(t,s)$ is either discontinuous or not smooth along the main diagonal, is presented. This scheme is of spectral accuracy when $k(t,s)$ is infinitely differentiable away from the diagonal $ t = s$. Relation to the singular value decomposition is indicated. Application to integro-differential Schrödinger equations with nonlocal potentials is given.


References [Enhancements On Off] (What's this?)

  • 1. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
  • 2. Bradley K. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput. 20 (1999), no. 5, 1551–1584 (electronic). MR 1694673, 10.1137/S1064827597325141
  • 3. Philip M. Anselone, Collectively compact operator approximation theory and applications to integral equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis; Prentice-Hall Series in Automatic Computation. MR 0443383
  • 4. Kendall E. Atkinson, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR 0483585
  • 5. Christopher T. H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR 0467215
  • 6. Raymond H. Chan and Michael K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996), no. 3, 427–482. MR 1409592, 10.1137/S0036144594276474
  • 7. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197–205. MR 0117885
  • 8. L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985. MR 837187
  • 9. Ch. Elster, E.E. Evans, H. Kamada and W. Gloeckle, Nonlocality in the Nucleon-Nucleon Interaction Due to the Minimal-Relativity Factors: Effects on Two-Nucleon Observables and the Three-Nucleon Binding Energy, Few-Body Systems, 21, 25 (1996), pp. 25-45.
  • 10. Herman Feshbach, A unified theory of nuclear reactions. II, Ann. Physics 19 (1962), 287–313. MR 0141458
  • 11. I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware; Translations of Mathematical Monographs, Vol. 41. MR 0355675
  • 12. Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. MR 1130394
  • 13. R. A. Gonzales, J. Eisert, I. Koltracht, M. Neumann, and G. Rawitscher, Integral equation method for the continuous spectrum radial Schrödinger equation, J. Comput. Phys. 134 (1997), no. 1, 134–149. MR 1455259, 10.1006/jcph.1997.5679
  • 14. David Gottlieb and Steven A. Orszag, Numerical analysis of spectral methods: theory and applications, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. MR 0520152
  • 15. L. Greengard and V. Rokhlin, On the numerical solution of two-point boundary value problems, Comm. Pure Appl. Math. 44 (1991), no. 4, 419–452. MR 1100810, 10.1002/cpa.3160440403
  • 16. S.-Y. Kang, Numerical Solution of Integral Equations with Nonsmooth Kernels and Applications, Ph.D. Thesis, Department of Mathematics, University of Connecticut, Storrs, CT, 2000.
  • 17. Sharad Kapur and Vladimir Rokhlin, High-order corrected trapezoidal quadrature rules for singular functions, SIAM J. Numer. Anal. 34 (1997), no. 4, 1331–1356. MR 1461787, 10.1137/S0036142995287847
  • 18. Rubin H. Landau, Quantum mechanics. II, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1990. A second course in quantum theory. MR 1062599
  • 19. R. Machleidt, K. Holinde and Ch. Elster, The Bonn Meson-Exchange Model for the Nucleon-Nucleon Interaction, Phys. Rep. 149, 1 (1987), pp. 1-89.
  • 20. R. Machleidt, F. Sammarruca and Y. Song, Nonlocal Nature of the Nuclear Force and its Impact on Nuclear Structure, Phys. Rev. C 53, R1483 (1996), pp. 1483-1487.
  • 21. N.F. Mott and H.S. Massey, The Theory of Atomic Collision, 3rd ed. Oxford at Clarendon Press, 1965.
  • 22. F. Perey and B. Buck, A Nonlocal Potential Model for the Scattering of Neutrons by Nuclei, Nucl. Phys. 32, 353 (1962), pp. 353-380.
  • 23. G.H. Rawitscher, B.D. Esry, E. Tiesinga, P. Burke, Jr. and I. Koltracht, Comparison of Numerical Methods for the Calculation of Cold Atomic Collisions, J. Chem. Phys. 111, 23 (1999), 10418-10426.
  • 24. G.H. Rawitscher, S-Y. Kang, I. Koltracht, E. Zerrad, K. Zerrad, B.T. Kim and T. Udagawa, Comparison of Numerical Methods for the Solution of the Schrödinger Equation in the Presence of Exchange Terms, submitted.
  • 25. Lothar Reichel, Fast solution methods for Fredholm integral equations of the second kind, Numer. Math. 57 (1990), no. 8, 719–736. MR 1065520, 10.1007/BF01386439
  • 26. H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988. MR 1013117
  • 27. W. Neal Sams and Donald J. Kouri, Noniterative solutions of integral equations for scattering. I. Single channels, J. Chem. Phys. 51 (1969), 4809–4814. MR 0487365
  • 28. Ed R. Smith and J. W. Henry, Noniterative integral-equation approach to scattering problems, Phys. Rev. A (3) 7 (1973), 1585–1590. MR 0363253
  • 29. John Strain, Locally corrected multidimensional quadrature rules for singular functions, SIAM J. Sci. Comput. 16 (1995), no. 4, 992–1017. MR 1335902, 10.1137/0916058

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 45B05, 45J05, 65Rxx, 65R20, 81U10

Retrieve articles in all journals with MSC (2000): 45B05, 45J05, 65Rxx, 65R20, 81U10


Additional Information

Sheon-Young Kang
Affiliation: Department of Mathematics, Purdue University North Central, Westville, Indiana 46391
Email: skang@purduenc.edu

Israel Koltracht
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email: kolt@math.uconn.edu

George Rawitscher
Affiliation: Department of Physics, University of Connecticut, Storrs, Connecticut 06269
Email: rawitsch@uconnvm.uconn.edu

DOI: http://dx.doi.org/10.1090/S0025-5718-02-01431-X
Keywords: Discontinuous kernels, fast algorithms, nonlocal potentials
Received by editor(s): March 29, 2001
Received by editor(s) in revised form: July 9, 2001
Published electronically: March 8, 2002
Additional Notes: The work of the first author is partially supported by a fellowship from alumni of Mathematics Department, Chungnam National University, Korea.
Article copyright: © Copyright 2002 American Mathematical Society