THE CLASS NUMBER ONE PROBLEM FOR SOME NON-ABELIAN NORMAL CM-FIELDS OF DEGREE 48

KU-YOUNG CHANG AND SOUN-HI KWON

Abstract. We prove that there is precisely one normal CM-field of degree 48 with class number one which has a normal CM-subfield of degree 16: the narrow Hilbert class field of $\mathbb{Q}(\sqrt{5}, \sqrt{101}, \theta)$ with $\theta^3 - \theta^2 - 5\theta - 1 = 0$.

1. Introduction

According to [O] and [H], there exist only finitely many normal CM-fields with class number one, and their degrees are less than or equal to 436. All imaginary abelian number fields with class number one are known in [Y]: their degrees are less than or equal to 24. All normal CM-fields of degree less than 48 with class number one are known by many authors ([LO1], [LO2], [Le], [LLO], [LP1], [LP2], [LOO], [Lou3], [P], [YPK], [PsK], [CK2], and [CK3]). In the following table we sum up the numbers of the non-abelian normal CM-fields N with class number one according to their degrees.

<table>
<thead>
<tr>
<th>$[N : \mathbb{Q}]$</th>
<th>nb</th>
<th>$[N : \mathbb{Q}]$</th>
<th>nb</th>
<th>$[N : \mathbb{Q}]$</th>
<th>nb</th>
<th>$[N : \mathbb{Q}]$</th>
<th>nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>17</td>
<td>20</td>
<td>1</td>
<td>32</td>
<td>6</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>24</td>
<td>7</td>
<td>36</td>
<td>3</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>28</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this paper we study the non-abelian normal CM-fields that contain a normal CM-subfield of degree 16, and will prove the following:

Theorem 1. There exists one and only one normal CM-field N of degree 48 with class number one which has a normal CM-subfield of degree 16: the narrow Hilbert class field of the real dihedral number field $K_{12} = \mathbb{Q}(\sqrt{5}, \sqrt{101}, \theta)$ of degree 12 with $\theta^3 - \theta^2 - 5\theta - 1 = 0$, narrow class number 4 and class number 2. The extension N/K_{12} is cyclic quartic, $d_N = d_{K_{12}}^4 = 2^{32} \cdot 5^{24} \cdot 101^{24}$, the maximal totally real subfield of N is the Hilbert class field of K_{12}, and the Galois group Gal(N/\mathbb{Q}) is isomorphic to the semi-direct product $C_3 \rtimes D_{16}$.

2. Prerequisite and notation

We use the following notation. For a number field K, we let h_K, d_K, ω_K, and ζ_K denote the class number, the absolute value of the discriminant, the number of roots of unity in K, and the Dedekind zeta function of K, respectively. If K
is a CM-field, we let h_K, K^+ and $Q_K \in \{1, 2\}$ be the relative class number, the maximal real subfield and the Hasse unit index of K, respectively. For an abelian extension F/K we denote by $\mathfrak{f}_{F/K}$ the finite part of its conductor. For a positive integer n we let $\zeta_n = e^{2\pi i/n}$. Before starting the proof of Theorem 1 we recall the well-known results which will be used later in this paper.

Proposition 1. (1) ([LOO] Lemma 2) If K is a normal CM-field, then the complex conjugation is in the center of its Galois group.

(2) ([CH] Lemma 13.5) Let K be a CM-field. If there is at least one ramified prime ideal in K/K^+ which is lying above an odd prime, then $Q_K = 1$.

(3) ([Ho] Theorem 5, [QR], or [LOO] Theorem 5) Let $k \subset K$ be two CM-fields. Then h_k divides h_{K^+}. Moreover, if $[K : k]$ is odd, then h_k divides h_K and $Q_k = Q_K$.

(4) ([LO2] and [Lou1] Proposition 6) Let K be a CM-field and let t be the number of prime ideals of K^+ that are ramified in the quadratic extension K/K^+. Then 2^{t-1} divides h_K. Moreover, if $Q_K = 2$, then 2^t divides h_K.

(5) ([Lou1] Proposition 13) and ([LO2] Proposition 2) Let $K = L_1L_2$ be a CM-field which is a compositum of two CM-fields L_1 and L_2 with the same maximal totally real subfield. Then

$$h_K = \frac{Q_K}{Q_{L_1}Q_{L_2}} \omega_{L_1}^{-1} \omega_{L_2}^{-1} h_{L_1}^{-1} h_{L_2}^{-1},$$

and $h_{L_1}^{-1} h_{L_2}^{-1}$ divides $4h_K$. In particular, if L_1 and L_2 are isomorphic, then $\omega_{L_1} = \omega_{L_2} = 2$ and $h_K = \frac{(Q_K/2)(Q_{L_1}/Q_{L_2})^2}{2}$.

(6) ([MI] Corollary 2.2 and 2.3) Let E/F be an extension of number fields. Then h_F divides $\left[E : F \right] h_E$. Moreover, if no nontrivial abelian subextension of E/F is unramified over E, then h_F divides h_E.

(7) Let $K = L_1L_2$ be a CM-field which is a compositum of two CM-fields L_1 and L_2 with the same maximal totally real subfield $L_1^+ = L_2^+$. If $h_K = 1$, then $h_{L_1} = 2$ and $h_{L_2} = 2$. If $h_K = 1$ and $h_{L_1} = h_{L_2} = 2$, then $h_{L_1} = h_{L_2} = 2$.

Proof. We only need to prove the last statement of (7). If $h_K = 1$ and $h_{L_1} = h_{L_2} = 2$, then K is the Hilbert class field of L_1 and is at the same time that of L_2. Hence, K^+ is the Hilbert class field of $L_1^+ = L_2^+$ (see [P] Lemma 6.2)].

Proposition 2. Let K be a CM-field of degree $2n$.

(1) ([MI] $h_K = Q_K \omega_K(2\pi)^n \cdot \sqrt{d_K/d_K^+} \cdot \text{Res}_{s=1}(\zeta_K) / \text{Res}_{s=1}(\zeta_K^+)$

(2) ([LO2] Proposition 9) Let $\beta_K = 1 - \left(2/\log h_K \right)$ and

$$\varepsilon_K = \max(1 - 2\pi n^{1/n}/d_K^{1/2n}, 2/5 \exp(-2\pi n/d_K^{1/2n})).$$

If $\zeta_K(\beta_K) \leq 0$, then $\text{Res}_{s=1}(\zeta_K) \geq 2\pi / (e \log d_K)$.

(3) ([Lou2]) There exists a computable constant $\mu_k > 0$ such that for any abelian extension K/k of degree m unramified at all the infinite places we have

$$\text{Res}_{s=1}(\zeta_K) \leq (\text{Res}_{s=1}(\zeta_K))^m \left(\frac{1}{2(m-1)} \log(d_K/d_k) + 2\mu_k \right)^{m-1}.$$

Let C_m denote the cyclic group of order m, D_m the dihedral group of order m, Q_m the quaternion group of order m and set $G_6 = \langle b, c, z | b^4 = c^2 = z^2 = 1, c^{-1}bc = bz, bz = zb, cz = cz \rangle$ and $G_8 = \langle b, c, z | b^2 = c^2 = z^4 = 1, c^{-1}bc = bz^2, bz = zb, cz = cz \rangle$ (in the notation of [JL]). Throughout this paper, N denotes a non-abelian
normal CM-field of degree 48. We assume that the 3-Sylow subgroup of its Galois group \(\text{Gal}(N/Q) \) is normal, and we let \(M \) denote the normal CM-subfield of degree 16 of \(N \). According to Proposition 1, if \(h_N = 1 \), then \(h_M = 1 \) (moreover, either \(N/M \) is ramified at least one finite place and \(h_M = 1 \) or \(N/M \) is unramified at all places, \(h_M = 3 \), and \(N \) is the Hilbert class field of \(M \)). Now, there are 26 normal CM-fields of degree 16 with relative class number one (see [LO2], [Lou3], [CK1], [PK], and Theorem 2 below). If \(\text{Gal}(M/Q) \) is non-abelian, then it is equal to \(Q_8 \times C_2, G_6, D_{16}, G_9, D_8 \times C_2 \). For proving Theorem 1, we first prove that if \(\text{Gal}(M/Q) \neq D_{16}, G_9, D_8 \times C_2 \), then we can use Proposition 1 and the known solutions to various (relative) class number problems for suitable CM-subfields of \(N \) to prove that \(h_N > 1 \). Now, assume that \(\text{Gal}(M/Q) = D_{16}, G_9, \) or \(D_8 \times C_2 \). We will show that we can find a subfield \(L \) of \(M^+ \) such that \(N/L \) is abelian and such that the use of abelian \(L \)-functions to factorize \(\zeta_N/\zeta_L \) readily yields \((\zeta_N/\zeta_L)(s) \geq 0 \) for \(0 < s < 1 \). Since \(M \) is known, \(L \) also is known, we will check that \(\zeta_L(s) \leq 0 \) for \(0 < s < 1 \) and we will therefore deduce that \(\zeta_N(s) \leq 0 \) for \(0 < s < 1 \). Using Proposition 2, we will obtain explicit lower bounds for \(h_N^{-1} \), according to which we will be able to compute explicit upper bounds on \(d_N \) when \(h_N = 1 \) and to construct a short list of number fields \(N \) containing all such \(N \)'s with \(h_N = 1 \). We will finally explain how one can use the method expounded in [Lou5] and [Lou6] to compute the relative class numbers of these finitely many CM-fields \(N \) that remain, thus completing the proof of Theorem 1.

3. Case 1: \(M \) is abelian

We will show the following.

Proposition 3. If \(N \) contains an abelian number field \(M \) of degree 16, then \(h_N > 1 \).

Proof. Let \(K_3 \) be any cubic subfield of \(N \). Since \(N \) is non-abelian, \(K_3 \) is not normal, its normal closure \(K_6 \) is a dihedral real sextic field, and we let \(k_2 \) denote the (real) quadratic subfield of \(K_6 \). The Galois group \(\text{Gal}(M/Q) \) is isomorphic to \(C_{16}, C_8 \times C_2, C_4 \times C_4, C_4 \times C_2 \times C_2, \) or \(C_2 \times C_2 \times C_2 \times C_2 \).

(i) If \(\text{Gal}(M/Q) = C_{16} \), then \(\text{Gal}(N/Q) \) is isomorphic to \(C_3 \times C_{16} = \langle a, \mu | a^3 = b^{16} = 1, b^{-1}ab = a^{-1} \rangle \), and \(N \) is a compositum of \(M \) and the real dihedral field of degree 6 that is fixed by \(\langle b^7 \rangle \). According to [Lou4] Theorem 5 we have \(h_N^{-1} > 1 \).

(ii) If \(\text{Gal}(M/Q) = C_8 \times C_2 \) with \(\text{Gal}(M^+/Q) = C_8 \), then \(\text{Gal}(N/Q) = \langle a, b, c \rangle | a^3 = b^8 = c^2 = 1, b^{-1}ab = a^{-1} \rangle \) with \(\text{Gal}(N/N^+) = \langle b^4 \rangle \). The subfield \(K_{12} \) fixed by \(\langle b^2 \rangle \) is a normal CM-field with Galois group isomorphic to \(Q_{12} \). By [LP1] \(h_{K_{12}}^{-1} > 4 \), whence \(h_N^{-1} > 1 \) by Proposition 1(3). If \(\text{Gal}(M/Q) = C_8 \times C_2 \) with \(\text{Gal}(M^+/Q) = C_4 \times C_2 \), then \(h_N^{-1} > 1 \) by [CK1]. Hence \(h_N^{-1} > 1 \) by Proposition 1(3).

(iii) If \(\text{Gal}(M/Q) = C_4 \times C_4 \), then \(\text{Gal}(N/Q) = Q_{12} \times C_4 \) and \(\text{Gal}(N^+/Q) \) is isomorphic to either \(S_3 \times C_4 \) or \(Q_{12} \times C_2 \). Let \(\psi_1 \) and \(\psi_2 \) be two odd primitive characters of order 4 such that \(M \) is associated with the group \(\langle \psi_1, \psi_2 \rangle \). If \(k_2 \) is associated with \(\langle \psi_2 \rangle \) or \(\langle \psi_2 \rangle \), then \(\text{Gal}(N^+/Q) = S_3 \times C_4 \). Assume that \(k_2 \) is associated with \(\langle \psi_2 \rangle \). Let \(M_{12,1} \) be the compositum of \(K_6 \) and the quartic field associated with \(\langle \psi_1 \rangle \), and \(M_{12,2} \) the compositum of \(K_6 \) and the quartic field associated with \(\langle \psi_1 \psi_2 \rangle \). Then \(M_{12,1} \) and \(M_{12,2} \) are quaternion CM-fields.

of degree 12 with the same maximal real subfield K_6. According to [LP1] Theorem 1], there is no pair of $(M_{12,1}, M_{12,2})$ such that $h_{M_{12,1}}^+ | 4$, $h_{M_{12,2}}^+ | 4$, and at the same time $M_{12,1}^+ = M_{12,2}^+$, whence $h_{M}^+ > 1$. By symmetry, if k_2 is associated with $\langle \psi_2 \rangle$, then $h_{M}^+ > 1$. Assume now that k_2 is associated with $\langle \psi_1 \psi_2 \rangle$. Let $M_{24,1}$ be the compositum of K_6 and the imaginary cyclic quartic field associated with $\langle \psi_1 \rangle$, and $M_{24,2}$ the compositum of K_6 and the imaginary cyclic quartic field associated with $\langle \psi_2 \rangle$. Then $M_{24,1}$ and $M_{24,2}$ are normal CM-fields with Galois group isomorphic to $S_3 \times C_4$ which have the same maximal real subfield. Using Proposition 1(5) we verify that $h_{M}^+ = h_{M_{24,1}}^+ h_{M_{24,2}}^+$.

By [LP1] Theorem 1] there is only on CM-field of relative class number one with Galois group isomorphic to $S_3 \times C_4$, whence $h_{M}^+ > 1$.

(iv) If $\text{Gal}(M/Q) = C_3 \times C_2 \times C_2$ with $\text{Gal}(M^+/Q) = C_4 \times C_2$, then $\text{Gal}(N/Q)$ is isomorphic to either $Q_{12} \times C_2 \times C_2$ or $S_3 \times C_2 \times C_2$. Let ψ be the odd primitive Dirichlet character of order 4, and let χ_1 and χ_2 be two quadratic odd characters such that M is associated with the group $\langle \psi, \chi_1, \chi_2 \rangle$. If k_2 is associated with $\langle \psi_2 \rangle$, then the compositum $M_{12,1}$ of K_6 and the field associated with $\langle \psi_1 \rangle$, and the compositum $M_{12,2}$ of K_6 and the field associated with $\langle \psi_1 \chi_1 \chi_2 \rangle$ are normal CM-fields with Galois group Q_{12} and $M_{12,1}^+ = M_{12,2}^+$. By [LP1] Theorem 1], $h_{M}^+ > 1$. If k_2 is associated with $\langle \psi_1 \chi_1 \chi_2 \rangle$ or $\langle \chi_1 \chi_2 \rangle$, then we let $M_{24,1}$ be the compositum of K_6 and the field associated with $\langle \psi \rangle$, and $M_{24,2}$ the compositum of K_6 and the field associated with $\langle \psi_1^2 \chi_1 \chi_2 \rangle$. Then $\text{Gal}(M_{24,1}/Q) = S_3 \times C_4$, $\text{Gal}(M_{24,2}/Q) = S_3 \times C_2 \times C_2$, $M_{24,1}^+ = M_{24,2}^+$, and $N = M_{24,1} M_{24,2}$. By [LP1] Theorem 1] $h_{M_{24,1}}^+ > 1$ and $h_{M_{24,2}}^+ > 1$, whence according to Proposition 1(7) we have $h_{M}^+ > 1$.

(v) If $\text{Gal}(M/Q) = C_4 \times C_2 \times C_2$ with $\text{Gal}(M^+/Q) = C_2 \times C_2 \times C_2$, then $h_{M}^+ > 1$ by [CK1]. Hence $h_{M}^+ > 1$.

(vi) If $\text{Gal}(M/Q) = C_2 \times C_2 \times C_2 \times C_2$, then $h_{M}^+ > 1$ by [CK1]. Hence $h_{M}^+ > 1$.

4. Case 2: $\text{Gal}(M/Q) \in \{D_{16}, Q_8 \times C_2\}$

In this section we assume that $\text{Gal}(M/Q) \in \{D_{16}, Q_8 \times C_2\}$ and $h_{M}^+ = 1$. We will prove that there is exactly one field N with $h_{N} = 1$. In subsection 4.1 we assume that $G(M/Q) = D_{16}$, and in subsection 4.2 we assume that $G(M/Q) = Q_8 \times C_2$.

4.1. $G(M/Q) = D_{16}$. There are five dihedral CM-fields M of degree 16 with relative class number one [LO2] Theorem 10]: the narrow Hilbert class fields of $Q(\sqrt{pq})$ with $(p, q) \in \{(2, 257), (5, 101), (5, 181), (13, 53), (13, 61)\}$. The narrow Hilbert class field of $Q(\sqrt{2 \cdot 257})$ has class number three and the remaining four M's have class number one. We set $K = Q(\sqrt{p}, \sqrt{q})$ and $k = Q(\sqrt{pq})$. The field M has three quadratic subfields L_1, L_2, and k with $\text{Gal}(M/L_1) = \text{Gal}(M/L_2) = D_8$, and $\text{Gal}(M/k) = C_8$. Therefore, the Galois group $\text{Gal}(N/Q)$ is isomorphic to $D_{16} \times C_3$ if N contains only one cubic cyclic subfield, $D_{48} = (D_8 \times C_3)^{\times 2}$ $C_2 = C_3 \times D_{16} = \langle a, b, c | a^3 = b^8 = c^2 = 1, c^{-1}bc = b^{-1}, b^{-1}ab = a^{-1}, ac = ca \rangle$. Otherwise, in [LO] it is proved that if $\text{Gal}(N/Q) = D_{48}$, then $h_{N} > 1$. We deal with the fields N with $\text{Gal}(N/Q) = D_{16} \times C_3$ in 4.1.1 and the fields N with $\text{Gal}(N/Q) = (D_8 \times C_3)^{\times 2}$ C_2 in 4.1.2, respectively.
Proposition 1. Therefore, \(K \) and sum up the computational results in Table 1. Note that \(N/k \) is cyclic of degree 24.

Lemma 1. Let \(\chi \) be any one of the eight characters of order 24 associated with the cyclic extension \(N/k \).

1. We have \((\zeta_N / \zeta_K)(s) \geq 0 \) in the range \(0 < s < 1 \).
2. For each given \(M \) with \(h_M = 1 \) we can compute a bound \(N_{k/\mathbb{Q}}(\mathfrak{p}) \leq C \) on the norms of the conductors \(\mathfrak{p} \) of the cyclic cubic extensions \(kK_3/k \) for the \(N \)'s such that \(h_N = 1 \). These bounds are listed in Table 1.
3. Assume that \(h_N = 1 \). Then \(\mathfrak{p} = (l) \) for some prime \(l \) which splits in \(k \), or \(\mathfrak{p} = \mathfrak{P}_1 \) for some prime ideal \(\mathfrak{P}_1 \) of \(k \) above a prime \(l \) ramified in \(k \).
4. \(h_M \) divides \(h_N \), \(L(0, \chi) \in \mathbb{Q}(\sqrt{2}, \sqrt{-3}) \), and \(h_N/h_M = N_{\mathbb{Q}(\sqrt{2}, \sqrt{-3})}(\frac{1}{4}L(0, \chi))^2 \) is a perfect square which can be computed using the techniques developed in [Lou3] and [Lou6].

Proof. (1) It follows from \((\zeta_N / \zeta_K)(s) = \prod_{s=1}^{11} |L(s, \chi)|^2 \).

(2) We have verified that for the above four \(M \)'s, \(\zeta_K(s) \leq 0 \) in the range \(0 < s < 1 \). Hence, \(\zeta_N(s) \leq 0 \) for \(0 < s < 1 \). Using [Lou2, Lemma 12] and Proposition 13 we compute explicitly \(\mu_k \text{ Res}_{s=1}(\zeta_k) \) and apply Proposition 2 to get lower bound for \(h_N \). Since \(M/M^+ \) is unramified at all finite places and \(Q_M = \omega_M = 2, N/N^+ \) is unramified at all finite places, \(d_{N^+} = \sqrt{N_{k/\mathbb{Q}}(\mathfrak{p})}^8 \), and \(Q_N = \omega_N = 2 \). From this lower bound for \(h_N \) we obtain the upper bounds \(C \) on \(N_{k/\mathbb{Q}}(\mathfrak{p}) \) such that \(h_N^2 = 1 \) implies \(N_{k/\mathbb{Q}}(\mathfrak{p}) \leq C \).

(3) If the number of ramified primes in \(K_3/k \) is greater than one, then 3 divides \(h_{K_3} \), whence \(3|h_{N^+} \) by Proposition 1(6). If there is a prime divisor \(l \) of \(N_{k/\mathbb{Q}}(\mathfrak{p}) \) which is inert in \(k \), then \(3^4 \) divides \(h_N \). Since \(M \) is the narrow Hilbert class field of \(k \), \((l) \) splits completely in \(M/k \), whence there are at least 4 prime ideals ramified in \(N^+/M^+ \) which split at the same time in \(M/M^+ \). Hence, \(3^4|h_N \) by [LOO, Proposition 8].

(4) According to [Lou3], the value \(L(0, \chi) \) is an algebraic integer of \(\mathbb{Q}(\zeta_{24}) \) and

\[
h_N^2/h_M^2 = N_{\mathbb{Q}(\zeta_{24})/\mathbb{Q}}(\frac{1}{4}L(0, \chi)).
\]

Let \(\text{Gal}(N/\mathbb{Q}) = \langle a, b, c | a^3 = b^8 = c^2 = 1, b^{-1}ab = a, c^{-1}ac = a, c^{-1}bc = b^{-1} \rangle \), where \(\text{Gal}(N/k) = \langle a, b \rangle \). The restriction of \(c \) to \(k \) generates \(\text{Gal}(k/\mathbb{Q}) \) and using Artin’s reciprocity theorem we obtain that \(\chi \circ c = \chi^7 \) and

\[
\sigma_7(L(0, \chi)) = L(0, \chi^7) = L(0, \chi \circ c) = L(0, \chi).
\]

Therefore, \(L(0, \chi) \in \mathbb{Q}(\sqrt{2}, \sqrt{-3}) \), the subfield of \(\mathbb{Q}(\zeta_{24}) \) fixed by \(\sigma_7 \). It follows that

\[
h_N^2/h_M^2 = (N_{\mathbb{Q}(\sqrt{2}, \sqrt{-3})/\mathbb{Q}}(\frac{1}{4}L(0, \chi)))^2
\]

is a perfect square.

We verify that \(h_N > 1 \) for all fields \(N \) satisfying points (2) and (3) in Lemma 1, and sum up the computational results in Table 1.
Table 1.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\mu_k \text{Res}{x=1}(\zeta_k) \leq N{k/Q}(\mathfrak{f}) \leq \hat{s})</th>
<th>(h_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Q}(\sqrt{5 \cdot 101}))</td>
<td>2.160235</td>
<td>36000 (7)</td>
</tr>
<tr>
<td></td>
<td>(9) 463²</td>
<td>(19) 933⁷²</td>
</tr>
<tr>
<td></td>
<td>(67) 454014²</td>
<td>(73) 1987279²</td>
</tr>
<tr>
<td></td>
<td>(103) 8589721²</td>
<td>(127) 5143901²</td>
</tr>
<tr>
<td></td>
<td>(181) 33057929²</td>
<td>(7) 0.154802</td>
</tr>
<tr>
<td>(\mathbb{Q}(\sqrt{5 \cdot 181}))</td>
<td>2.154802</td>
<td>4700 (7)</td>
</tr>
<tr>
<td></td>
<td>(181) 4032</td>
<td>(28) 4032</td>
</tr>
<tr>
<td>(\mathbb{Q}(\sqrt{13 \cdot 53}))</td>
<td>1.976174</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>(19) 23863²</td>
<td>(31) 130729²</td>
</tr>
<tr>
<td></td>
<td>(67) 8539888²</td>
<td>(73) 11762791²</td>
</tr>
<tr>
<td>(\mathbb{Q}(\sqrt{13 \cdot 61}))</td>
<td>2.531191</td>
<td>18000</td>
</tr>
<tr>
<td></td>
<td>(7) 63²</td>
<td>(9) 1519²</td>
</tr>
<tr>
<td></td>
<td>(31) 540127²</td>
<td>(67) 487²</td>
</tr>
</tbody>
</table>

4.1.2. \(\text{Gal}(N/\mathbb{Q}) = (D_8 \times C_3) \rtimes C_2\). The field \(N\) has three non-normal cubic subfields. Let \(K_3\) be any one of them, \(K_6\) its normal closure, and \(k_2\) the quadratic subfield of \(K_6\). Since if \(\text{Gal}(M/k_2) = C_8\), then \(\text{Gal}(N/\mathbb{Q}) = D_{48}\) and \(h_N > 1\). It follows that \(k_2 = \mathbb{Q}(\sqrt{p})\) or \(\mathbb{Q}(\sqrt{q})\), and \(\text{Gal}(M/k_2) = D_8\).

Lemma 2. (1) We have \((\zeta_N/\zeta_K)(s) \geq 0\) in the range \(0 < s < 1\).

(2) There exists some positive integer \(f \geq 1\) such that \(\mathfrak{f}_{K_3/k_2} = (f)\). For each given \(M\) with \(h^{-1}_M = 1\) we can compute a bound \(f \leq C\) on the conductors \((f)\) of the cyclic cubic extensions \(K_6/k_2\) for the \(N\)'s such that \(h_N = 1\). These bounds and the possible \(f\)'s are given in Table 2.

(3) Let \(\chi\) be any one of the four characters of order 12 associated with the cyclic extension \(N/K\). Then \(h_M\) divides \(h_N, L(0, \chi) \in \mathbb{Q}\), and \(h_N/h_M = (L(0, \chi)/16)^4\) is a perfect fourth power which can be computed by using the techniques developed in [Lou5] and [Lou6].
Proof. (1) Since N/K and M^+/k are cyclic of degree 12 and 4, respectively, then as in point (1) of Lemma 1 we obtain $(\zeta_N/\zeta_{M^+})(s) \geq 0$ and $(\zeta_{M^+}/\zeta_K)(s) \geq 0$ for $0 < s < 1$.

(2) The first part follows from [Mar, Theorem III.1] or [LPL, Theorem 4]. For $K = \mathbb{Q}(\sqrt{2}, \sqrt{257})$ we have verified that $\zeta_K(s) \leq 0$ in the range $0 < s < 1$. Hence, $\zeta_N(s) \leq 0$ for $0 < s < 1$ for every M with $h_M^- = 1$. Since N^+/k_2 is abelian and $d_{N^+/k_2} = f^{16}$, using Proposition 2 we get upper bound C on f such that $h_N^- = 1$ implies $f \leq C$. To alleviate the list of possible conductors f we use the same argument as in point (3) of Lemma 1: If there is a prime divisor l of f which is inert in $\mathbb{Q}(\sqrt{pq})$, then 3^4 divides h_N^-.

(3) Let K_{12} be the compositum of K and K_6. We have

$$h_N^-/h_M^- = N_{\mathbb{Q}(\zeta_{12})/\mathbb{Q}}(L(0, \chi)/2^4).$$

Assume $\text{Gal}(N/K) = (a, b^2)$. Let χ_- be any one of two quartic characters associated with the cyclic extension M/K and χ_+ any one of two cubic characters associated with the cyclic extension K_{12}/K such that $\chi = \chi_- \chi_+$. Using the Artin reciprocity theorem, it can be easily verified that $\chi_- \circ b = \chi_-$, $\chi_- \circ c = \chi_-^{-1}$, $\chi_+ \circ c = \chi_+^{-1}$, and $\chi_+ \circ c = \chi_+$. Whence $\chi \circ b = \chi^3$ and $\chi \circ c = \chi^7$.

For a positive integer n let $\sigma_n \in \text{Gal}(\mathbb{Q}(\zeta_{12})/\mathbb{Q})$ with $\sigma_n(\zeta_{12}) = \zeta_{12}$. We have

$$\sigma_5(L(0, \chi)) = L(0, \chi^5) = L(0, \chi \circ b) = L(0, \chi)$$

and $\sigma_7(L(0, \chi)) = L(0, \chi)$. Since $(\sigma_5, \sigma_7) = \text{Gal}(\mathbb{Q}(\zeta_{12})/\mathbb{Q})$ we have $L(0, \chi) \in \mathbb{Q}$, whence h_N^-/h_M^- is the 4-th power of some integer.

\[\square \]
Our computational results are given in Table 2. When \(K = \mathbb{Q}(\sqrt{2}, \sqrt{257}) \), if \(h_N = 1 \), then \(N/M, N^+/M^+ \), and \(K_6/k_2 \) are unramified. Otherwise, \(h_N \equiv 0 \mod 3 \). Since \(\mathbb{Q}(\sqrt{2}) \) has class number one, we must have \(k_2 = \mathbb{Q}(\sqrt{257}) \) and \(f = 1 \). Note that when \(K = \mathbb{Q}(\sqrt{5}, \sqrt{101}) \), \(k_2 = \mathbb{Q}(\sqrt{101}) \), and \(f = 2 \), we have \(K_6 = \mathbb{Q}(\sqrt{101}, \theta) \) with \(\theta^3 - \theta^2 - 5\theta - 1 = 0 \). Using KASH (\([K]\)) we verify that the class group of \(\mathbb{Q}(\sqrt{5}, \sqrt{101}, \theta) \) is isomorphic to \(C_2 \) and the narrow class group of this field is isomorphic to \(C_4 \). It follows that \(N^+ \) is the Hilbert class field of \(\mathbb{Q}(\sqrt{5}, \sqrt{101}, \theta) \) and \(N \) is the narrow Hilbert class field of this field. In addition, thanks to KASH we verify that the class number of \(N^+ \) is equal to 1.

4.2. \(\text{Gal}(M/\mathbb{Q}) = Q_8 \times C_2 \). By \([\text{Lou}3]\) Theorem 1,
\[
M = \mathbb{Q}\left(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{-2(2+\sqrt{2})(3+\sqrt{3})}\right)
\]
is the only normal CM-field of relative class number one with Galois group isomorphic to \(Q_8 \times C_2 \). This field has class number one and \(Q_M = 2 \). In this subsection we assume that \(N \) contains this field \(M \) and will prove that \(h_N > 1 \). The Galois group \(\text{Gal}(N/\mathbb{Q}) \) is isomorphic to either \(Q_8 \times C_2 \times C_3 \) or \(Q_{24} \times C_2 \) according to whether \(N \) has a cyclic cubic subfield or not.

4.2.1. \(\text{Gal}(N/\mathbb{Q}) = Q_8 \times C_2 \times C_3 \). The field \(N \) has only one cyclic cubic subfield \(K_3 \). The composita
\[
N_1 = K_3(\sqrt{2}, \sqrt{3}, \sqrt{-(2+\sqrt{2})(3+\sqrt{3})}) \quad \text{and} \quad N_2 = K_3(\sqrt{2}, \sqrt{3}, \sqrt{-1})
\]
have the same maximal real subfield \(K_3(\sqrt{2}, \sqrt{3}) \). Suppose that \(h_N = 1 \). By Proposition 1(7) we would have \(h_{N_1} = 1 \) or \(h_{N_2} = 1 \). Since every octic quaternion CM-field has an even relative class number, \(h_{N_1} \) is even. Using \([\text{CK}1]\) we verify that there is no imaginary abelian number field with Galois group isomorphic to \(C_2 \times C_2 \times C_2 \times C_3 \) of relative class number one which contains the field \(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{-1}) \). Hence \(h_N > 1 \).

4.2.2. \(\text{Gal}(N/\mathbb{Q}) = Q_{24} \times C_2 \). The field \(N \) contains a non-normal cubic subfield \(K_3 \). The compositum
\[
N_1 = K_3(\sqrt{2}, \sqrt{3}, \sqrt{-2(2+\sqrt{2})(3+\sqrt{3})})
\]
is a normal CM-field with Galois group isomorphic to \(Q_{24} \). The compositum \(N_2 = K_3(\sqrt{2}, \sqrt{3}, \sqrt{-1}) \) is a normal CM-field with Galois group isomorphic to \(D_{12} \times C_2 \). We have \(N = N_1N_2 \) with \(N_1^+ = N_2^+ = K_3(\sqrt{2}, \sqrt{3}) \). Note that \(h_{N_1} \) is even. According to \([\text{LO}2]\) Theorem 1, \(h_{N_2} > 1 \). By Proposition 1(7) it follows that \(h_N > 1 \).

5. Case 3: \(\text{Gal}(M/\mathbb{Q}) \in \{G_9, G_6\} \)

In subsection 5.1 we assume that \(\text{Gal}(M/\mathbb{Q}) = G_9 \), and in subsection 5.2 we assume that \(\text{Gal}(M/\mathbb{Q}) = G_6 \).

5.1. \(\text{Gal}(M/\mathbb{Q}) = G_9 \). There is only one normal CM-field \(M \) of relative class number one with Galois group isomorphic to \(G_9 \) (\([\text{LO}2]\) Theorem 20):
\[
M = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{37}, \sqrt{-2(2+\sqrt{2}+3\sqrt{3})(2+\sqrt{5})})
\]
Assume that \(N \) contains \(M \). The aim of this subsection is to prove that \(h_N > 1 \). Note that \(\text{Gal}(M/Q(\sqrt{2}, \sqrt{5}, \sqrt{37})) = Q_8 \), \(\text{Gal}(M/Q(\sqrt{2})) = \text{Gal}(M/Q(\sqrt{5})) = \text{Gal}(M/Q(\sqrt{37})) = D_8 \), and \(\text{Gal}(M/Q(\sqrt{2}, \sqrt{5})) = \text{Gal}(M/Q(\sqrt{2}, \sqrt{37})) = \text{Gal}(M/Q(\sqrt{5}, \sqrt{37})) = C_4 \times C_2 \). Therefore, \(\text{Gal}(N/Q) \) is isomorphic to \(G_0 \times C_3 \)

if \(N \) contains only one cubic cyclic subfield \(K_3 \), \((Q_8 \times C_3) \times C_2 \), \((D_8 \times C_3) \times C_2 \), \((a, b, c \mid a^3 = b^2 = c^2 = z^4 = 1, c^{-1}bc = b^2, b = zb, cz = zc, b^{-1}ab = a, c^{-1}ac = a, z^{-1}az = a^{-1}) \), or \((C_4 \times C_2 \times C_3) \times C_2 \) otherwise. We divide this subsection into four parts according to \(\text{Gal}(N/Q) \).

5.1.1. \(\text{Gal}(N/Q) = G_9 \times C_3 \). We will show that \(h_N > 1 \). We first get an upper bound \(C \) on the conductor of \(K_3/Q \) such that if \(h_N^- = 1 \), then the conductor is less than or equal to \(C \). Let \(K = Q(\sqrt{2}, \sqrt{5}, \sqrt{37}) \). Since \(N/K \) is cyclic of degree 12, then as in point (1) of Lemma 1 we obtain \(N = (\zeta_N^s \zeta_M^s)^{0 \leq s \leq 0} \) for \(0 < s < 1 \). We verify that \(\zeta_N^s \leq s \leq 0 \), which implies \(\zeta_N(s) \leq 0 \) for \(s \in [0, 1] \). Let \(F = Q(\sqrt{2}, \sqrt{5}, \sqrt{37}) \). The extension \(N^+/N < F \) is abelian of degree 12 and \(d_N^+/d_F^2 = N_{F/K}(\zeta_{F/K})^8 \). Using \(\mu_F \text{Res}_{s=1}(\zeta_F) \leq 2.27842 \) and Proposition 2, we obtain that if \(h_N^- \leq 1 \), then \(N_{F/K}(\zeta_{F/K}) < 1300 \), whence \(\zeta_{F/K} \in \{7, (3)^2, (13), (19), (31), (37)\} \) with \((37) = Q_{37}^2 \) in \(F \).

(i) When \(\zeta_{F/K} = (7) \), \(K_3 \) is of conductor 7. There are four non-normal octic CM-fields containing \(Q(\sqrt{2}) \) with relative class number one. Let \(M_{8,1} = Q(\sqrt{2}, \sqrt{5}, \sqrt{3}) \), \(M_{8,2} = (2 + \sqrt{2})/2 \) and \(M_{8,2} \) its conjugate over \(Q \). Set \(N_{24,1} = M_{8,1}K_3 \) and \(N_{24,2} = M_{8,2}K_3 \). By Proposition 1(5) \(h_N^- = (h_N^-)^2 \). The two prime ideals lying above 7 in \(M_{8,1} = Q(\sqrt{2}, \sqrt{5}) \) split in \(M_{8,1} \). Hence, \(3^2|\overline{h}_{N_{24,1}} \) by \([LQ] \) Proposition 8] and \(3^4|h_N^- \).

(ii) When \(\zeta_{F/K} = (3)^2 \), \(K_3 \) is of conductor 9. Let \(M_{8,1}, M_{8,2}, N_{24,1}, \) and \(N_{24,2} \) be as in (i). One prime ideal lying above 37 in \(Q(\sqrt{2}, \sqrt{5}) \) is ramified in \(M_{8,1} \) and \(37 \) splits in \(K_3 \), whence \(2^2|h_{N_{24,1}}^- \) and \(2^4|h_N^- \). By the same argument we prove that if \(\zeta_{F/K} = (19) \), then \(2^4|h_N^- \).

(iii) When \(\zeta_{F/K} = (13) \), \(K_3 \) is of conductor 13. Let \(M_{8,1} \) be any one of two non-normal octic CM-fields of \(M \) containing \(Q(\sqrt{2}, \sqrt{37}) \) and \(M_{8,2} \) its conjugate over \(Q \). Let \(N_{24,1} = M_{8,1}K_3 \) and \(N_{24,2} = M_{8,2}K_3 \). One prime ideal lying above 5 in \(Q(\sqrt{2}, \sqrt{37}) \) is ramified in \(M_{8,1} \) and \(5 \) splits in \(K_3 \), which implies \(2^2|h_{N_{24,1}}^- \) and \(2^4|h_N^- \).

(iv) When \(\zeta_{F/K} = (31) \), \(K_3 \) is of conductor 31. We let \(M_{8,1} \) be any one of two non-normal octic subfields of \(M \) containing \(Q(\sqrt{5}, \sqrt{37}) \) and \(M_{8,2} \) its conjugate over \(Q \). One prime ideal lying above 2 is ramified in \(M_{8,1} \) and \(2 \) splits in \(K_3 \), whence \(2^2|h_{N_{24,1}}^- \) and \(2^4|h_N^- \).

(v) When \(\zeta_{F/K} = Q_{37}^2 \), \(K_3 \) is of conductor 37. According to \([Ma]\), the cyclic sextic subfield \(K_3^*(\sqrt{2}, \sqrt{5}) \) of \(N \) has class number 6, whence by Proposition 1(6) \(3|h_N^- \).

5.1.2. \(\text{Gal}(N/Q) = (D_8 \times C_3) \times C_2 \). Let \(K_3 \) be any one of three non-normal cubic subfields of \(N \), \(K_0 \) its normal closure, and \(k_2 \) the quadratic subfield of \(K_0 \). We have \(\text{Gal}(M/k_2) = D_8 \). Let \(K \) be the intermediate field between \(M^+ \) and \(k_2 \) such that \(G(M/K) = C_4 \). Then \(M/K \) is unramified at all finite primes, \(\text{Gal}(M^+/k_2) = C_2 \times C_2 \), \(\text{Gal}(N/K) = C_{12} \), and \(\text{Gal}(N^+/k_2) = C_2 \times C_2 \times C_3 \). As in point (1) of
Table 3.

<table>
<thead>
<tr>
<th>k</th>
<th>$f \leq f$</th>
<th>h_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Q}(\sqrt{2})$</td>
<td>22 None</td>
<td></td>
</tr>
<tr>
<td>$\mathbb{Q}(\sqrt{5})$</td>
<td>8 None</td>
<td></td>
</tr>
<tr>
<td>$\mathbb{Q}(\sqrt{37})$</td>
<td>44 2 2^4</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.

<table>
<thead>
<tr>
<th>k_2</th>
<th>C</th>
<th>f</th>
<th>h_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Q}(\sqrt{2 \cdot 5})$</td>
<td>140</td>
<td>37</td>
<td>10212</td>
</tr>
<tr>
<td>$\mathbb{Q}(\sqrt{2 \cdot 37})$</td>
<td>21</td>
<td>9</td>
<td>50442</td>
</tr>
<tr>
<td>$\mathbb{Q}(\sqrt{5 \cdot 37})$</td>
<td>35 None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lemma 1 we obtain $(\zeta_N/\zeta_{m^+})(s) \geq 0$ and $\zeta_N(s) \leq 0$ for $s \in]0,1[$. Since N^+/k_2 is abelian of degree 12 and $d_{N^+/k_2} = f^{16} N_{K_0/k_2}(\mathfrak{D}_{N^+/K_0})$, where $(f) = \mathfrak{f}_{K_0/k_2}$ and \mathfrak{D}_{N^+/K_0} denotes the discriminant of the extension N^+/K_0, using Proposition 2 we obtain upper bound C on f such that if $h_N = 1$, then $f \leq C$. Our computational results are given in Table 3. As in point (3) of Lemma 2 we can easily verify that h_N/h_M is the 4-th power of some rational integer.

5.1.3. Gal(N/\mathbb{Q}) = $(C_4 \times C_2 \times C_3) \rtimes C_2 = \langle a,b,c,z \mid a^3 = b^2 = c^2 = z^4 = 1, c^{-1}bc = bz^2, bz = zb, cz = ze, b^{-1}ab = a, c^{-1}ac = a^{-1}, z^{-1}az = a \rangle$. In this case N has three non-normal cubic subfields and its associated quadratic subfield k_2 has Gal(M/k_2) = $C_4 \times C_2$. For a fixed field k_2 there are two intermediate fields K between k_2 and M^+ such that Gal(M/K) = C_4. Let K be any one of these two fields. Then M/K is unramified at all finite primes, Gal(N/K) = C_{12}, Gal(M^+/k_2) = $C_2 \times C_2$, and Gal(N^+/k_2) = $C_2 \times C_2 \times C_3$. Analogously as in subsection 5.1.2 we get upper bound C on f such that if $h_N = 1$, then $f \leq C$. Since Gal(N/k_2) = $C_4 \times C_2 \times C_3$, we compute h_N using Hecke L-functions over k_2 (see Table 4).

5.1.4. Gal(N/\mathbb{Q}) = $(Q_8 \times C_3) \rtimes C_2$. In this case N has three non-normal cubic subfields such that its associated quadratic subfield k_2 is equal to $\mathbb{Q}(\sqrt{2 \cdot 5 \cdot 37})$. Let K be any one of three quartic fields containing $\mathbb{Q}(\sqrt{2 \cdot 5 \cdot 37})$. Then Gal($N/K$) = C_{12} and Gal(N^+/k_2) = $C_2 \times C_2 \times C_3$. As in subsection 5.1.2 we verify that if $h_N = 1$, then $f \leq 36$ with $\mathfrak{f}_{K_0/k_2} = (f)$. There is no sextic field K_0 containing $\mathbb{Q}(\sqrt{2 \cdot 5 \cdot 37})$ with $f \leq 36$. Therefore, $h_N > 1$.

5.2. Gal(M/\mathbb{Q}) = G_6. In [Lou3] it is proved that there are exactly two such fields M with $h_M = 1$: the composita $M = M_1 M_2$ listed in Table 5. In fact, those are the only fields with Galois group isomorphic to G_6 of relative class number one. The Galois group Gal(M^+/\mathbb{Q}) is isomorphic to D_8 or $C_4 \times C_2$. When Gal(M^+/\mathbb{Q}) = D_8, M is a compositum of an octic dihedral CM-field $M_{8,1}$ and an imaginary abelian number field $M_{8,2}$ with Gal($M_{8,2}/\mathbb{Q}$) = $C_4 \times C_2$. Using [YK] and [CK1], we verify
that there is only one such field M with $h_M = 1$: the second field in Table 5. When $\text{Gal}(M^+/Q) = C_4 \times C_2$, M is a compositum of two octic dihedral CM-fields $M_{8,1}$ and $M_{8,2}$ with $M_{8,1}^+ = M_{8,2}^+$. According to [Lou3 Theorem 2] there is only one such field M with $h_M = 1$: the first field in Table 5. We will prove that $h_N > 1$.

5.2.1. $\text{Gal}(N/Q) = G_6 \times C_3$. If $\text{Gal}(M^+/Q) = C_4 \times C_2$, then $\text{Gal}(N_1/Q) = D_8 \times C_3 = \text{Gal}(N_2/Q)$. According to [P Theorem 1], $h_{N_1} > 1$ and $h_{N_2} > 1$, whence $h_N > 1$. If $\text{Gal}(M^+/Q) = D_8$, then $\text{Gal}(N_1/Q) = D_8 \times C_3$, and $\text{Gal}(N_2/Q) = C_4 \times C_2 \times C_3$. Using [CK1], we verify that $h_{N_2} > 4$, whence $h_N > 1$.

5.2.2. $\text{Gal}(N/Q) = C_3 \times G_6$.

(a) Let M be the first field in Table 5. The quadratic field k_2 associated with K_3 is either $Q(\sqrt{34})$, $Q(\sqrt{2})$, or $Q(\sqrt{17})$. If $k_2 = Q(\sqrt{34})$, then $\text{Gal}(N_1/Q) = D_{24}$, and $\text{Gal}(N_2/Q) = C_3 \times D_8$. If $k_2 = Q(\sqrt{2})$, then $\text{Gal}(N_1/Q) = C_3 \times D_8$, and $\text{Gal}(N_2/Q) = D_{24}$. If $k_2 = Q(\sqrt{17})$, then $\text{Gal}(N_1/Q) = C_3 \times D_8 = \text{Gal}(N_2/Q)$. According to [P Theorem 1] and [Lef Theorem 4.1], we have $h_{N_1} > 1$ and $h_{N_2} > 1$, whence $h_N > 1$.

(b) Let M be the second field in Table 5. The quadratic field k_2 associated with K_3 is either $Q(\sqrt{221})$, $Q(\sqrt{17})$, or $Q(\sqrt{17})$. If $k_2 = Q(\sqrt{221})$, then $\text{Gal}(N_1/Q) = D_{24}$, and $\text{Gal}(N_2/Q) = S_3 \times C_4$. If $k_2 = Q(\sqrt{17})$, then $\text{Gal}(N_1/Q) = C_3 \times D_8$ and $\text{Gal}(N_2/Q) = Q_{12} \times C_2$. If $k_2 = Q(\sqrt{17})$, then $\text{Gal}(N_1/Q) = C_3 \times D_8$, and $\text{Gal}(N_2/Q) = S_3 \times C_4$. Using [Lef Theorem 4.1] and [P Theorem 1], we have $h_{N_1} > 1$ and $h_{N_2} > 1$, whence $h_N > 1$.

6. CASE 4: $\text{Gal}(M/Q) = D_8 \times C_2$

To begin with, we prove the following:

Theorem 2 (Compare with [Lou3 Theorems 2 and 3]). There are four normal CM-fields M of degree 16 and Galois group $D_8 \times C_2$ with relative class number one, those given in the following Table 6.
Table 6.

<table>
<thead>
<tr>
<th>M^+</th>
<th>$\alpha : M = M^+ (\sqrt{-\alpha})$</th>
<th>Q_M</th>
<th>ω_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(\sqrt{2}, \sqrt{3}, \sqrt{17})$</td>
<td>$5(5 + \sqrt{17})/2$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$Q(\sqrt{2}, \sqrt{3}, \sqrt{3 + \sqrt{3}})$</td>
<td>1</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>$Q(\sqrt[3]{3}, \sqrt[15]{15 + 8\sqrt{3}})$</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>$Q(\sqrt{2}, \sqrt{17}, \sqrt{3(5 + \sqrt{17})}/2)$</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Proof. The Galois group $\text{Gal}(M^+/\mathbb{Q})$ is isomorphic to either D_8 or $C_2 \times C_2 \times C_2$. When $\text{Gal}(M^+/\mathbb{Q}) = D_8$, M is a compositum of an octic dihedral CM-field $M_{8,1}$ and an imaginary abelian number field $M_{8,2}$ with $\text{Gal}(M_{8,2}/\mathbb{Q}) = C_2 \times C_2 \times C_2$. Let L be any one of four non-normal quartic CM-subfields of $M_{8,1}$. According to [Lom3, Proposition 16], $\hat{h}_L = 1$ if and only if $(h_L, h_{M_{8,2}}) \in \{(1, 4), (1, 2), (2, 1)\}$. In the case that $(h_L, h_{M_{8,2}}) = (1, 4)$ or $(1, 2)$, $M_{8,1}^+ = M_{8,2}^+$ is of the form $Q(\sqrt{p}, \sqrt{q})$, where (p, q) is one of the 19 pairs given in [LO1, Theorem 8]. Then $M_{8,2} = Q(\sqrt{p}, \sqrt{q}, \sqrt{-m})$, where $Q(\sqrt{-m})$ is one of 81 (= $9 + 18 + 54$) imaginary quadratic fields of class number one, two or four. For these 1539 (= 19×81) CM-fields $M_{8,2}$ we compute $\hat{h}_{M_{8,2}}$ and verify that there is only one field M with $\hat{h}_M = 1$: the fourth field in Table 6. In the case that $(h_L, h_{M_{8,2}}) = (2, 1)$, using [YK] and [CK1] we verify that there are exactly two fields M with $\hat{h}_M = 1$: the second and third fields in Table 6. When $\text{Gal}(M^+/\mathbb{Q}) = C_2 \times C_2 \times C_2$, M is a compositum of two octic dihedral CM-fields $M_{8,1}$ and $M_{8,2}$. According to [Lom3, Theorem 2], there is only one such M with $\hat{h}_M = 1$: the first field in Table 6.

From now on we assume that M is one of these four fields and we will prove that $h_M > 1$. We classify the Galois group $\text{Gal}(N/\mathbb{Q})$. Let K_3 be any cubic subfield of N. If K_3 is not normal, then its normal closure K_6 is a dihedral real sextic field and we let k_3 denote the (real) quadratic subfield of K_6. If K_3 is normal, then $\text{Gal}(N/\mathbb{Q}) = D_8 \times C_6$. If K_3 is not normal over \mathbb{Q}, then $\text{Gal}(N/\mathbb{Q})$ is isomorphic to either $D_8 \times S_3$, $D_2 \times C_2$, or $(C_2 \times D_8) \times C_2$. Let $K_4 = M_{8,1}^{+\times} = M_{8,2}^{+\times}$. If $K_4 \cap k_3 = \mathbb{Q}$, then $\text{Gal}(M^+/\mathbb{Q}) = C_2 \times C_2 \times C_2$, and $\text{Gal}(N/\mathbb{Q}) = D_8 \times S_3$. If $K_4 \cap k_2 \not\subseteq \mathbb{Q}$, then $M_{8,1}/k_2$ is either cyclic or biquadratic bicyclic. If $M_{8,1}/k_2$ is cyclic quartic, then $\text{Gal}(N/\mathbb{Q}) = D_{24} \times C_2$. If $M_{8,1}/k_2$ is biquadratic bicyclic, then $\text{Gal}(K_3M_{8,1}/\mathbb{Q}) = C_3 \times D_8 = (a, b, c)a^3 = b^4 = c^2 = 1, b^{-1}ab = a^{-1}, c^{-1}ac = a, c^{-1}bc = b^{-1}$, and $\text{Gal}(N/\mathbb{Q}) = (C_3 \times D_8) \times C_2$.

6.1. $\text{Gal}(N/\mathbb{Q}) = D_8 \times C_6$. If $\text{Gal}(M^+/\mathbb{Q}) = D_8$, then the composita $N_1 = M_{8,1}K_3$ and $N_2 = M_{8,2}K_3$ are normal CM-subfields of N with the same maximal real subfields K_3K_4. By [P, Theorem 1], the compositum of the dihedral octic CM-field $Q(\sqrt{13}, \sqrt{17}, \sqrt{-9 + \sqrt{13}}/2)$ and of the cyclic cubic field of conductor 13 is the only normal CM-field of relative class number one with Galois group isomorphic to $D_8 \times C_3$. In Table 6 there is no field M containing $Q(\sqrt{13}, \sqrt{17})$. It follows then that $h_{N_1} > 1$. According to [CK1], there are exactly two imaginary abelian number fields with Galois group isomorphic to $C_2 \times C_2 \times C_2 \times C_2$ of relative class number one: $F_7(\sqrt{-1}, \sqrt{-3}, \sqrt{-7})$ and $F_7(\sqrt{-3}, \sqrt{-7}, \sqrt{-13})$, where F_7 denotes the cyclic...
cubic field of conductor 7. In Table 6 there is no field \(N \) containing \(\mathbb{Q}(\sqrt{3}, \sqrt{7}) \), or \(\mathbb{Q}(\sqrt{5}, \sqrt{21}) \), whence \(h_N^{-1} > 1 \). It follows that if \(\text{Gal}(M^+/N) = D_8 \), then \(h_N > 1 \). If \(\text{Gal}(M^+/N) = C_2 \times C_2 \times C_2 \), then \(N_1 = M_{8,1}K_3 \) and \(N_2 = M_{8,2}K_3 \) are normal CM-fields with Galois group isomorphic to \(D_8 \times C_3 \). Note that \(M_{8,1}^+ = M_{8,2}^+ = \mathbb{Q}(\sqrt{2}, \sqrt{17}) \). According to [P, Theorem 1], \(h_{N_1}^- > 1 \) and \(h_{N_2}^- > 1 \), which implies \(h_N > 1 \).

6.2. \(\text{Gal}(N/\mathbb{Q}) = D_8 \times S_3 \). In this case \(N \) has three non-normal real cubic subfields. Let \(K_3, K_6, k_2 \) and \(K_4 \) be as above. We have that \(K_4 \cap k_2 = \mathbb{Q} \), \(\text{Gal}(M^+/\mathbb{Q}) = C_2 \times C_2 \times C_2 \), \(M \) is the first field in Table 6. In addition, we have \(K_4 = \mathbb{Q}(\sqrt{2}, \sqrt{17}) \), and \(k_2 = \mathbb{Q}(\sqrt{m}) \) with \(m \in \{5, 2 \cdot 5, 5 \cdot 17, 2 \cdot 5 \cdot 17\} \). Let \((f) \) be the conductor of the extension \(K_5/k_2 \) with \(f \) a positive integer.

Lemma 3.

1. We have \(\zeta_N(s) \leq 0 \) for \(0 < s < 1 \).

2. For each given \(k_2 \) in the above we can compute a bound of \(f \leq C \) on the conductor \((f) \) for \(N \)'s such that \(h_N = 1 \). These bounds and the possible \(f \)'s are compiled in Table 7.

3. The quotient \(h_N/h_M \) is the perfect fourth power of some rational integer.

Proof.

1. Let \(\chi_{N/M^+} \) be any one of two characters associated with the cyclic sextic extension \(N/M^+ \). We have

\[
\frac{\zeta_N(s)}{\zeta_{M^+}(s)} = \frac{\zeta_M(s)}{\zeta_{M^+}(s)} |L(s, \chi_{N/M^+})L(s, \chi_{N/M^+}^2)|^2
\]

and

\[
\frac{\zeta_M(s)}{\zeta_{M^+}(s)} = \frac{\zeta_{M_{8,1}}(s)}{\zeta_{K_4}(s)} \frac{\zeta_{M_{8,2}}(s)}{\zeta_{K_4}(s)} = L(s, \psi_1)^2 L(s, \psi_2)^2,
\]

where \(\psi_i \) is the unique irreducible character of degree 2 of \(\text{Gal}(M_{8,i}/\mathbb{Q}) \) the dihedral group of order 8, and \(L(s, \psi_i) \) denotes the Artin L-function associated with \(\psi_i \) for \(i = 1, 2 \). Since \(\psi_i \) is real valued, \(L(s, \psi_i) \) is on the real axis and \(L(s, \psi_i)^2 \geq 0 \). For \(M^+ = \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{17}) \) we have verified that \(\zeta_{M^+}(s) \leq 0 \) for \(s \in \{0, 1\} \), whence \(\zeta_N(s) \leq 0 \).

2. Since \(M/M^+ \) is unramified at all finite primes, \(N/N^+ \) is unramified at all finite primes and \(d_N/d_{N^+} = d_{N^+} = d_{K_6}^2 f_{16}^2 N_{K_6/\mathbb{Q}}(\mathcal{O}_{N^+/K_6}) \). Using Proposition 2, we get an upper bound on \(f \). Since the prime ideals lying above 2 and those above 17 split in \(M/M^+ \), if \((f, 2) > 1 \) or \((f, 17) > 1 \), then \(3^2 \) divides \(h_N \) by [LOO, Proposition 8]. Note that the prime ideals lying above 13 split in \(M/M^+ \), whence the relative class number of the fourth field \(N \) in Table 7 is divisible by \(3^4 \).

<table>
<thead>
<tr>
<th>(k_2)</th>
<th>(\mu_{k_2})</th>
<th>(\text{Res}{s=1}(\zeta{k_2}))</th>
<th>(f \leq)</th>
<th>(f)</th>
<th>(h_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Q}(\sqrt{5}))</td>
<td>0.0436324</td>
<td>10</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathbb{Q}(\sqrt{2 \cdot 5}))</td>
<td>0.4276490</td>
<td>41</td>
<td>37</td>
<td>(920^4)</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{Q}(\sqrt{5 \cdot 17}))</td>
<td>0.5861712</td>
<td>31</td>
<td>9</td>
<td>(44^4)</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{Q}(\sqrt{2 \cdot 5 \cdot 17}))</td>
<td>1.4062136</td>
<td>38</td>
<td>13</td>
<td>(3^4 h_N)</td>
<td></td>
</tr>
</tbody>
</table>
(3) Note that $M_{8,1}$ and $M_{8,2}$ are cyclic over $\mathbb{Q}(\sqrt{34})$. Let K be the compositum of $\mathbb{Q}((\sqrt{34}))$ and k_2. Then $\text{Gal}(N/K) = C_{12}$. Let χ be any one of the four characters of order 12 associated with the cyclic extension N/K. Similarly to point (3) of Lemma 2, we verify that $L(0, \chi) \in \mathbb{Q}$ and $h_N^+ / h_M^- = (L(0, \chi)/2)^4$.

In conclusion, we have proved that every normal CM-field with Galois group isomorphic to $D_8 \times S_3$ has class number greater than one. Our computational results are given in Table 7.

6.3. $\text{Gal}(N/\mathbb{Q}) = D_{24} \times C_2$. In this case N has three non-normal cubic fields and $M_{8,1}/k_2$ is cyclic. Let $N_1 = M_{8,1}K_1$ and $N_2 = M_{8,2}K_3$. Then we have $N = N_1N_2$ with $N_1^2 = N_2^2 = K_1K_3$. If $\text{Gal}(M^+/\mathbb{Q}) = D_8$, then $\text{Gal}(N_1/\mathbb{Q}) = D_{24}$, and $\text{Gal}(N_2/\mathbb{Q}) = S_3 \times C_2 \times C_2$. If $\text{Gal}(M^+/\mathbb{Q}) = C_2 \times C_2 \times C_2$, then $\text{Gal}(N_1/\mathbb{Q}) = D_{24} = \text{Gal}(N_2/\mathbb{Q})$. Using [Lef, Theorem 4.1] and [P] Theorem 1, we verify that in both cases $h_{N_1} > 1$ and $h_{N_2} > 1$. It follows that the class number of a normal CM-field with Galois group isomorphic to $D_{24} \times C_2$ is greater than one.

6.4. $\text{Gal}(N/\mathbb{Q}) = (C_3 \times D_8) \times C_2$. In this case N has three non-normal cubic fields and $M_{8,1}/k_2$ is biquadratic bicyclic. Then the Galois group of the compositum $N_1 = M_{8,1}K_3$ over \mathbb{Q} is isomorphic to $C_3 \times D_8$, whence $h_{N_1} > 1$ ([P, Theorem 13]). If $\text{Gal}(M^+/\mathbb{Q}) = D_8$, then $\text{Gal}(N_2/\mathbb{Q}) = S_3 \times C_2 \times C_2$. If $\text{Gal}(M^+/\mathbb{Q}) = C_2 \times C_2 \times C_2$, then $\text{Gal}(N_1/\mathbb{Q}) = C_3 \times D_8$. By [P] Theorems 1 and 13 $h_{N_2} > 1$. Consequently, if $\text{Gal}(N/\mathbb{Q}) = (C_3 \times D_8) \times C_2$, then $h_N > 1$.

To conclude, Theorem 1 is now proved with completion.

All computations were carried out using Pari-Gp ([Pa]) and KASH ([K]).

Acknowledgments

This research was supported by Grant BK21.

References

[Ho] K. Horie, On a ratio between relative class numbers, Math. Z., 211 (1992), 505-521. MR 94a:11171

S. Louboutin and R. Okazaki, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc., 54 (1996), 227-238. MR 97g:11122

S. Louboutin, Class number one problem for the non-abelian normal CM-fields of degree 42, preprint.

J. M. Masley, Class numbers of real cyclic sextic fields with small conductor, Compositio Math. 37 (1978), 297-319. MR 80e:12005

K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), 899-921. MR 94g:11096

K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), 899-921. MR 94g:11096
