On perturbations of matrix pencils with real spectra, a revisit

Author:
Ren-Cang Li

Journal:
Math. Comp. **72** (2003), 715-728

MSC (2000):
Primary 15A22, 15A42, 65F15

Published electronically:
May 16, 2002

MathSciNet review:
1954964

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues earlier studies by Bhatia and Li on eigenvalue perturbation theory for diagonalizable matrix pencils having real spectra. A unifying framework for creating crucial perturbation equations is developed. With the help of a recent result on generalized commutators involving unitary matrices, new and much sharper bounds are obtained.

**1.**Rajendra Bhatia,*Matrix analysis*, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR**1477662****2.**Rajendra Bhatia and Chandler Davis,*A bound for the spectral variation of a unitary operator*, Linear and Multilinear Algebra**15**(1984), no. 1, 71–76. MR**731677**, 10.1080/03081088408817578**3.**Rajendra Bhatia, Chandler Davis, and Alan McIntosh,*Perturbation of spectral subspaces and solution of linear operator equations*, Linear Algebra Appl.**52/53**(1983), 45–67. MR**709344**, 10.1016/0024-3795(83)80007-X**4.**Rajendra Bhatia, Fuad Kittaneh, and Ren-Cang Li,*Some inequalities for commutators and an application to spectral variation. II*, Linear and Multilinear Algebra**43**(1997), no. 1-3, 207–219. MR**1613207**, 10.1080/03081089708818526**5.**Rajendra Bhatia and Ren Cang Li,*On perturbations of matrix pencils with real spectra. II*, Math. Comp.**65**(1996), no. 214, 637–645. MR**1333304**, 10.1090/S0025-5718-96-00699-0**6.**C. R. Crawford,*A stable generalized eigenvalue problem*, SIAM J. Numer. Anal.**13**(1976), no. 6, 854–860. MR**0431631**

C. R. Crawford,*Errata: “A stable generalized eigenvalue problem” (SIAM J. Numer. Anal. 13 (1976), n0. 6, 854–860)*, SIAM J. Numer. Anal.**15**(1978), no. 5, 1070. MR**507565**, 10.1137/0715070**7.**Ludwig Elsner and Ji Guang Sun,*Perturbation theorems for the generalized eigenvalue problem*, Linear Algebra Appl.**48**(1982), 341–357. MR**683231**, 10.1016/0024-3795(82)90120-3**8.**A. J. Hoffman and H. W. Wielandt,*The variation of the spectrum of a normal matrix*, Duke Math. J.**20**(1953), 37–39. MR**0052379****9.**Ren Cang Li,*Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils*, Linear Algebra Appl.**182**(1993), 199–234. MR**1207083**, 10.1016/0024-3795(93)90500-N**10.**Ren Cang Li,*A perturbation bound for definite pencils*, Linear Algebra Appl.**179**(1993), 191–202. MR**1200151**, 10.1016/0024-3795(93)90329-M**11.**Ren Cang Li,*On perturbations of matrix pencils with real spectra*, Math. Comp.**62**(1994), no. 205, 231–265. MR**1208838**, 10.1090/S0025-5718-1994-1208838-3**12.**Ren-Cang Li,*Spectral variations and Hadamard products: some problems*, Linear Algebra Appl.**278**(1998), no. 1-3, 317–326. MR**1637312**, 10.1016/S0024-3795(97)10088-X**13.**Mario Romeo and Paolo Tilli,*On some variational problems in the theory of unitarily invariant norms and Hadamard products*, Linear Algebra Appl.**326**(2001), no. 1-3, 161–172. MR**1815957**, 10.1016/S0024-3795(00)00284-6**14.**G. W. Stewart,*Perturbation bounds for the definite generalized eigenvalue problem*, Linear Algebra Appl.**23**(1979), 69–85. MR**520614**, 10.1016/0024-3795(79)90094-6**15.**A. I. Rozhenko,*Razryvnye 𝐷^{𝑚}-splainy i obshchie teoremy skhodimosti interpolyatsionnykh splainov*, \cyr Preprint [Preprint], vol. 1030, Ross. Akad. Nauk Sibirsk. Otdel., Vychisl. Tsentr, Novosibirsk, 1994 (Russian, with English and Russian summaries). MR**1392700****16.**Ji Guang Sun,*A note on Stewart’s theorem for definite matrix pairs*, Linear Algebra Appl.**48**(1982), 331–339. MR**683230**, 10.1016/0024-3795(82)90119-7**17.**Bo Kȧgström and Axel Ruhe (eds.),*Matrix pencils*, Lecture Notes in Mathematics, vol. 973, Springer-Verlag, Berlin-New York, 1983. MR**697741****18.**P. Tilli,*On some problems involving invariant norms and Hadamard products*, Structured Matrices in Mathematics, Computer Science, and Engineering. II (Providence, RI) (Vadim Olshevsky, ed.), Contemporary Mathematics, American Mathematical Society, 2001, vol. 281, pp. 319-324.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
15A22,
15A42,
65F15

Retrieve articles in all journals with MSC (2000): 15A22, 15A42, 65F15

Additional Information

**Ren-Cang Li**

Affiliation:
Department of Mathematics, University of Kentucky, Lexington, KY 40506

Email:
rcli@ms.uky.edu

DOI:
https://doi.org/10.1090/S0025-5718-02-01449-7

Keywords:
Diagonalizable matrix pencil,
definite pencil,
real spectrum,
unitarily invariant norm,
perturbation bound

Received by editor(s):
January 10, 2001

Received by editor(s) in revised form:
August 24, 2001

Published electronically:
May 16, 2002

Additional Notes:
This work was supported in part by the National Science Foundation under Grant No. ACI-9721388 and by the National Science Foundation CAREER award under Grant No. CCR-9875201.

Article copyright:
© Copyright 2002
American Mathematical Society