Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Constructing complete tables of quartic fields using Kummer theory


Authors: Henri Cohen, Francisco Diaz y Diaz and Michel Olivier
Journal: Math. Comp. 72 (2003), 941-951
MSC (2000): Primary 11Y40, 11R16, 11R29
DOI: https://doi.org/10.1090/S0025-5718-02-01452-7
Published electronically: June 13, 2002
MathSciNet review: 1954977
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We explain how to construct tables of quartic fields of discriminant less than or equal to a given bound in an efficient manner using Kummer theory, instead of the traditional (and much less efficient) method using the geometry of numbers. As an application, we describe the computation of quartic fields of discriminant up to $10^7$, the corresponding table being available by anonymous ftp.


References [Enhancements On Off] (What's this?)

  • 1. K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), 1213-1237. MR 97m:11159
  • 2. A.-M. Bergé, J. Martinet, and M. Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp. 54 (1990), 869-884. MR 90k:11169
  • 3. M. Bhargava, Gauss Composition and Generalizations, Proceedings ANTS V, Sydney (2002), Lecture Notes in Comp. Sci., Springer-Verlag (2002), to appear.
  • 4. J. Buchmann and D. Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), 161-174. MR 89f:11147
  • 5. J. Buchmann, D. Ford, and M. Pohst, Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993), 873-879. MR 94a:11164
  • 6. H. Cohen, A Course in Computational Algebraic Number Theory (third printing), Graduate Texts in Math. 138, Springer-Verlag, 1996. MR 94i:11105 (1st printing)
  • 7. -, Advanced Topics in Computational Number Theory, Graduate Texts in Math. 193, Springer-Verlag, 2000. MR 2000k:11144
  • 8. H. Cohen, F. Diaz y Diaz and M. Olivier, Density of number field discriminants, in preparation.
  • 9. -, Construction of tables of quartic fields, Proceedings ANTS IV, Leiden (2000), Lecture Notes in Comp. Sci. 1838, Springer-Verlag (2000), 257-268.
  • 10. -, Tables of octic fields with a quartic subfield, Math. Comp. 68 (1999), 1701-1716. MR 99m:11132
  • 11. -, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998), 773-795. MR 98g:11128
  • 12. -, Enumerating quartic dihedral extensions of ${\mathbb Q}$, Compositio Math., to appear.
  • 13. -, Counting discriminants of number fields, in preparation.
  • 14. H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields (I), Bull. London Math. Soc. 1 (1969), 345-348. MR 40:7223
  • 15. -, On the density of discriminants of cubic fields (II), Proc. Roy. Soc. London 322 (1971), 405-420. MR 58:10816
  • 16. D. Ford, Enumeration of totally complex quartic fields of small discriminant, Computational Number Theory (1989) (A. Pethö, M. Pohst, H. C. Williams, and H. Zimmer, eds.), de Gruyter, Berlin and New York (1991), 129-138. MR 93b:11140
  • 17. M. Olivier, The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992), 419-432. MR 92e:11119
  • 18. A. Yukie, Density theorems related to prehomogenous vector spaces, preprint in English; also in Swikaisekikenkiyosho Kokyuroku, No. 1173 (2000), 171-183 (Japanese).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11Y40, 11R16, 11R29

Retrieve articles in all journals with MSC (2000): 11Y40, 11R16, 11R29


Additional Information

Henri Cohen
Affiliation: Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
Email: cohen@math.u-bordeaux.fr

Francisco Diaz y Diaz
Affiliation: Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
Email: diaz@math.u-bordeaux.fr

Michel Olivier
Affiliation: Laboratoire A2X, U.M.R. 5465 du C.N.R.S., Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France
Email: olivier@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S0025-5718-02-01452-7
Received by editor(s): October 18, 2000
Received by editor(s) in revised form: September 26, 2001
Published electronically: June 13, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society