Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Nontrivial Galois module structure of cyclotomic fields

Authors: Marc Conrad and Daniel R. Replogle
Journal: Math. Comp. 72 (2003), 891-899
MSC (2000): Primary 11R33, 11R29; Secondary 11R27, 11R18
Published electronically: June 4, 2002
MathSciNet review: 1954973
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We say a tame Galois field extension $L/K$ with Galois group $G$ has trivial Galois module structure if the rings of integers have the property that $\mathcal{O}_{L}$ is a free $\mathcal{O}_{K}[G]$-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes $l$ so that for each there is a tame Galois field extension of degree $l$ so that $L/K$ has nontrivial Galois module structure. However, the proof does not directly yield specific primes $l$ for a given algebraic number field $K.$ For $K$ any cyclotomic field we find an explicit $l$ so that there is a tame degree $l$extension $L/K$ with nontrivial Galois module structure.

References [Enhancements On Off] (What's this?)

  • [1] S-P Chan and C-H Lim, Relative Galois module structure of rings of integers of cyclotomic fields, J. Reine Angew. Math. 434 (1993), 205-230. MR 93i:11127
  • [2] M. Conrad, Construction of bases for the group of cyclotomic units, J. Num. Theory 81 (2000), 1-15. MR 2001f:11182
  • [3] A. Fröhlich, Galois Module Structure of Algebraic Integers, Springer-Verlag, Berlin, 1983. MR 85h:11067
  • [4] C. Greither, D. R. Replogle, K. Rubin, and A. Srivastav, Swan Modules and Hilbert-Speiser number fields, J. Num. Theory 79 (1999), 164-173. MR 2000m:11111
  • [5] T. Kohl and D. R. Replogle, Computation of several Cyclotomic Swan Subgroups, Math. Comp., 71 (2002), 343-348.
  • [6] H. B. Mann, On integral bases, Proc. Amer. Soc. Math. 9 (1958), 162-172. MR 20:26
  • [7] L. R. McCulloh, Galois Module Structure of Elementary Abelian Extensions, J. Alg. 82 (1983), 102-134. MR 85d:11093
  • [8] L. R. McCulloh, Galois Module Structure of Abelian Extensions, J. Reine Angew. Math. 375/376 (1987), 259-306. MR 88k:11080
  • [9] I. Reiner and S. Ullom, A Mayer-Vietoris sequence for class groups, J. Alg. 31 (1974), 305-342. MR 50:2321
  • [10] D. R. Replogle, Swan Modules and Realisable Classes for Kummer Extensions of Prime Degree, J. Alg. 212 (1999), 482-494. MR 2000a:11161
  • [11] D. R. Replogle, Cyclotomic Swan subgroups and irregular indices, Rocky Mountain Journal Math. 31 (Summer 2001), 611-618.
  • [12] D. R. Replogle and R. G. Underwood, Nontrivial tame extensions over Hopf orders, Acta Arithmetica (to appear).
  • [13] The SIMATH group/H. G. Zimmer, SIMATH: A computer algebra system for algebraic number theory,
  • [14] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Annals Math. 108 (1978), 107-134. MR 58:5585
  • [15] S. V. Ullom, Nontrivial lower bounds for class groups of integral group rings, Illinois Journal Mathematics 20 (1976), 361-371. MR 52:14024
  • [16] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1982. MR 85g:11001

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R33, 11R29, 11R27, 11R18

Retrieve articles in all journals with MSC (2000): 11R33, 11R29, 11R27, 11R18

Additional Information

Marc Conrad
Affiliation: Faculty of Technology, Southampton Institute, East Park Terrace, Southampton, S014 0YN Great Britain

Daniel R. Replogle
Affiliation: Department of Mathematics and Computer Science, College of Saint Elizabeth, 2 Convent Road, Morristown, New Jersey 07960

Keywords: Swan subgroups, cyclotomic units, Galois module structure, tame extension, normal integral basis
Received by editor(s): November 6, 2000
Received by editor(s) in revised form: July 15, 2001
Published electronically: June 4, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society