Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Maximum norm stability of difference schemes for parabolic equations on overset nonmatching space-time grids
HTML articles powered by AMS MathViewer

by T. P. Mathew and G. Russo PDF
Math. Comp. 72 (2003), 619-656 Request permission

Abstract:

In this paper, theoretical results are described on the maximum norm stability and accuracy of finite difference discretizations of parabolic equations on overset nonmatching space-time grids. We consider parabolic equations containing a linear reaction term on a space-time domain $\Omega \times [0,T]$ which is decomposed into an overlapping collection of cylindrical subregions of the form $\Omega _{l}^{\ast } \times [0,T]$, for $l=1, \dotsc , p$. Each of the space-time domains $\Omega _{l}^{\ast } \times [0,T]$ are assumed to be independently grided (in parallel) according to the local geometry and space-time regularity of the solution, yielding space-time grids with mesh parameters $h_{l}$ and $\tau _{l}$. In particular, the different space-time grids need not match on the regions of overlap, and the time steps $\tau _{l}$ can differ from one grid to the next. We discretize the parabolic equation on each local grid by employing an explicit or implicit $\theta$-scheme in time and a finite difference scheme in space satisfying a discrete maximum principle. The local discretizations are coupled together, without the use of Lagrange multipliers, by requiring the boundary values on each space-time grid to match a suitable interpolation of the solution on adjacent grids. The resulting global discretization yields a large system of coupled equations which can be solved by a parallel Schwarz iterative procedure requiring some communication between adjacent subregions. Our analysis employs a contraction mapping argument. Applications of the results are briefly indicated for reaction-diffusion equations with contractive terms and heterogeneous hyperbolic-parabolic approximations of parabolic equations.
References
  • Yves Achdou, Gassan Abdoulaev, Jean-Claude Hontand, Yuri A. Kuznetsov, Olivier Pironneau, and Christophe Prud’homme, Nonmatching grids for fluids, Domain decomposition methods, 10 (Boulder, CO, 1997) Contemp. Math., vol. 218, Amer. Math. Soc., Providence, RI, 1998, pp. 3–22. MR 1645841, DOI 10.1090/conm/218/02999
  • Yves Achdou, Yvon Maday, and Olof B. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal. 36 (1999), no. 2, 551–580. MR 1675257, DOI 10.1137/S0036142997321005
  • Vladimir I. Arnol′d, Ordinary differential equations, Springer Textbook, Springer-Verlag, Berlin, 1992. Translated from the third Russian edition by Roger Cooke. MR 1162307
  • F. Ben Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math. 84 (1999), 173–197.
  • C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991) Pitman Res. Notes Math. Ser., vol. 299, Longman Sci. Tech., Harlow, 1994, pp. 13–51. MR 1268898
  • Christoph Börgers and Charles S. Peskin, A Lagrangian fractional step method for the incompressible Navier-Stokes equations on a periodic domain, J. Comput. Phys. 70 (1987), no. 2, 397–438. MR 892920, DOI 10.1016/0021-9991(87)90189-6
  • J. H. Bramble, R. E. Ewing, J.E. Pasciak, and A. H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput. Meth. Appl. Mech. Engrg. 67 (1988), 149–159.
  • Franco Brezzi, Claudio Canuto, and Alessandro Russo, A self-adaptive formulation for the Euler/Navier-Stokes coupling, Comput. Methods Appl. Mech. Engrg. 73 (1989), no. 3, 317–330. MR 1016645, DOI 10.1016/0045-7825(89)90071-6
  • Xiao-Chuan Cai, Maksymilian Dryja, and Marcus Sarkis, Overlapping nonmatching grid mortar element methods for elliptic problems, SIAM J. Numer. Anal. 36 (1999), no. 2, 581–606. MR 1675261, DOI 10.1137/S0036142997323582
  • Xiao-Chuan Cai, Tarek P. Mathew, and Marcus V. Sarkis, Maximum norm analysis of overlapping nonmatching grid discretizations of elliptic equations, SIAM J. Numer. Anal. 37 (2000), no. 5, 1709–1728. MR 1759913, DOI 10.1137/S0036142998348741
  • Claudio Canuto and Alessandro Russo, Self-adaptive coupling of mathematical models and/or numerical methods, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 35–44. MR 1262603, DOI 10.1090/conm/157/01403
  • Tony F. Chan and Tarek P. Mathew, Domain decomposition algorithms, Acta numerica, 1994, Acta Numer., Cambridge Univ. Press, Cambridge, 1994, pp. 61–143. MR 1288096, DOI 10.1017/S0962492900002427
  • G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution of partial differential equations, J. Comp. Phys. 90 (1990), 1–64.
  • Philippe G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Math. 4 (1970), 338–352. MR 292317, DOI 10.1007/BF01844166
  • M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method for the case of many subregions, Tech. Report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, 1987.
  • Maksymilian Dryja and Olof B. Widlund, Domain decomposition algorithms with small overlap, SIAM J. Sci. Comput. 15 (1994), no. 3, 604–620. Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992). MR 1273155, DOI 10.1137/0915040
  • Richard E. Ewing, Domain decomposition techniques for efficient adaptive local grid refinement, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 192–206. MR 992015
  • R. E. Ewing, R. D. Lazarov, and P. S. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids, Tech. report, University of Wyoming, 1988.
  • Charbel Farhat, Jan Mandel, and François-Xavier Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Methods Appl. Mech. Engrg. 115 (1994), no. 3-4, 365–385. MR 1285024, DOI 10.1016/0045-7825(94)90068-X
  • P. J. J. Ferket and A. A. Reusken, A finite difference discretization method for elliptic problems on composite grids, Computing 56 (1996), no. 4, 343–369 (English, with English and German summaries). MR 1397146, DOI 10.1007/BF02253460
  • M. Garbey, Y. Kuznetsov, and Y. Vassilevski, Parallel Schwarz methods for advection-diffusion equations, SIAM J. Sci. Comp. 22–3, (2000), 891–916.
  • E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Proceedings of IMACS conference (J. Wang, M. Allen, B. Chen, and T. Mathew, eds.), 1997, Also appeared as technical report from Center for Research on Parallel Computation, CRPC-TR97701.
  • W. D. Henshaw, Automatic grid generation, Acta Numerica (1996), 121–148.
  • S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089, DOI 10.1007/BF03046994
  • Andrzej Karafiat, Discrete maximum principle in parabolic boundary-value problems, Ann. Polon. Math. 53 (1991), no. 3, 253–265. MR 1109593, DOI 10.4064/ap-53-3-253-265
  • P.-L. Lions, On the Schwarz alternating method. I, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR 972510
  • P.-L. Lions, On the Schwarz alternating method. II. Stochastic interpretation and order properties, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 47–70. MR 992003
  • T. P. Mathew, Uniform convergence of the Schwarz alternating method for solving singularly perturbed advection-diffusion equations, SIAM J. Numer. Anal. 35 (1998), no. 4, 1663–1683. MR 1627223, DOI 10.1137/S0036142995296485
  • Alfio Quarteroni and Alberto Valli, Theory and application of Steklov-Poincaré operators for boundary-value problems: the heterogeneous operator case, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) SIAM, Philadelphia, PA, 1991, pp. 58–81. MR 1106451
  • Robert D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220455
  • Y. Saad, Iterative methods for sparse linear systems, PWS Publishing Company, Boston, MA, U.S.A, 1996.
  • Göran Starius, Composite mesh difference methods for elliptic boundary value problems, Numer. Math. 28 (1977), no. 2, 243–258. MR 461941, DOI 10.1007/BF01394455
  • Joseph L. Steger and John A. Benek, On the use of composite grid schemes in computational aerodynamics, Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), 1987, pp. 301–320. MR 912522, DOI 10.1016/0045-7825(87)90045-4
  • Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
  • Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581–613. MR 1193013, DOI 10.1137/1034116
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 65N20, 65F10
  • Retrieve articles in all journals with MSC (2000): 65N20, 65F10
Additional Information
  • T. P. Mathew
  • Affiliation: 115 Seal Rock Drive, San Francisco, California 94121
  • Email: tmathew@mindspring.com
  • G. Russo
  • Affiliation: Dipartimento di Matematica ed Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
  • Email: russo@dmi.unict.it
  • Received by editor(s): July 25, 2000
  • Published electronically: November 4, 2002
  • © Copyright 2002 American Mathematical Society
  • Journal: Math. Comp. 72 (2003), 619-656
  • MSC (2000): Primary 65N20, 65F10
  • DOI: https://doi.org/10.1090/S0025-5718-02-01462-X
  • MathSciNet review: 1954959