Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Analysis of multilevel methods for eddy current problems


Author: R. Hiptmair
Journal: Math. Comp. 72 (2003), 1281-1303
MSC (2000): Primary 65N55, 65N30, 35Q60
DOI: https://doi.org/10.1090/S0025-5718-02-01468-0
Published electronically: October 18, 2002
MathSciNet review: 1972736
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In papers by Arnold, Falk, and Winther, and by Hiptmair, novel multigrid methods for discrete $\boldsymbol{H}(\textbf{curl};\Omega)$-elliptic boundary value problems have been proposed. Such problems frequently occur in computational electromagnetism, particularly in the context of eddy current simulation.

This paper focuses on the analysis of those nodal multilevel decompositions of the spaces of edge finite elements that form the foundation of the multigrid methods. It provides a significant extension of the existing theory to the case of locally vanishing coefficients and nonconvex domains. In particular, asymptotically uniform convergence of the multigrid method with respect to the number of refinement levels can be established under assumptions that are satisfied in realistic settings for eddy current problems.

The principal idea is to use approximate Helmholtz-decompositions of the function space $\boldsymbol{H}(\textbf{curl};\Omega)$ into an $H^1(\Omega)$-regular subspace and gradients. The main results of standard multilevel theory for $H^1(\Omega)$-elliptic problems can then be applied to both subspaces. This yields preliminary decompositions still outside the edge element spaces. Judicious alterations can cure this.


References [Enhancements On Off] (What's this?)

  • 1. R. ALBANESE AND G. RUBINACCI, Analysis of three dimensional electromagnetic fileds using edge elements, J. Comp. Phys., 108 (1993), pp. 236-245.
  • 2. H. AMMARI, A. BUFFA, AND J.-C. N´EDÉLEC, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math., 60 (2000), pp. 1805-1823. MR 2001g:78003
  • 3. C. AMROUCHE, C. BERNARDI, M. DAUGE, AND V. GIRAULT, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21 (1998), pp. 823-864. MR 99e:35037
  • 4. D. ARNOLD, R. FALK, AND R. WINTHER, Multigrid in $H(\operatorname{div})$ and $H({\mathrm\mathbf curl})$, Numer. Math., 85 (2000), pp. 175-195. MR 2001d:65161
  • 5. E. B¨ANSCH, Local mesh refinement in $2$ and $3$ dimensions, IMPACT Comput. Sci. Engrg., 3 (1991), pp. 181-191. MR 92h:65150
  • 6. R. BECK, P. DEUFLHARD, R. HIPTMAIR, R. HOPPE, AND B. WOHLMUTH, Adaptive multilevel methods for edge element discretizations of Maxwell's equations, Surveys on Mathematics for Industry, 8 (1998), pp. 271-312. MR 2000i:65206
  • 7. R. BECK AND R. HIPTMAIR, Multilevel solution of the time-harmonic Maxwell equations based on edge elements, Int. J. Num. Meth. Engr., 45 (1999), pp. 901-920. MR 2000b:78027
  • 8. J. BEY, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355-378. MR 96i:65105
  • 9. M. BIRMAN AND M. SOLOMYAK, $L_2$-theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys, 42 (1987), pp. 75-96. MR 89e:35127
  • 10. A. BONNET-BENDHIA, C. HAZARD, AND S. LOHRENGEL, A singular field method for the solution of Maxwell's equations in polyhedral domains, SIAM J. Appl. Math., 59 (1999), pp. 2028-2044. MR 2000g:78032
  • 11. F. BORNEMANN, A sharpened condition number estimate for the BPX-preconditioner of elliptic finite element problems on highly non-uniform triangulations, Tech. Rep. SC 91-9, ZIB, Berlin, Germany, September 1991.
  • 12. A. BOSSAVIT, A rationale for edge elements in ${3}{D}$ field computations, IEEE Trans. Mag., 24 (1988), pp. 74-79.
  • 13. -, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEEE Proc. A, 135 (1988), pp. 493-500.
  • 14. -, Solving Maxwell's equations in a closed cavity and the question of spurious modes, IEEE Trans. Mag., 26 (1990), pp. 702-705.
  • 15. -, A new viewpoint on mixed elements, Meccanica, 27 (1992), pp. 3-11.
  • 16. D. BRAESS AND W. HACKBUSCH, A new convergence proof for the multigrid method including the V-cycle, SIAM J. Numer. Anal., 20 (1983), pp. 967-975. MR 85h:65233
  • 17. J. BRAMBLE, Multigrid methods, vol. 294 of Pitman Research Notes in Mathematics Series, Longman, London, 1993. MR 95b:65002
  • 18. J. BRAMBLE, J. PASCIAK, J. WANG, AND J. XU, Convergence estimates for multigrid algorithms without regularity assumptions, Math. Comp. 57, 57 (1991), pp. 23-45. MR 91m:65158
  • 19. J. BRAMBLE AND J. XU, Some estimates for a weighted $L^2$-projection, Math. Comp., 56 (1991), pp. 463-476. MR 91k:65140
  • 20. F. BREZZI, J. DOUGLAS, AND D. MARINI, Two families of mixed finite elements for $2$nd order elliptic problems, Numer. Math., 47 (1985), pp. 217-235. MR 87g:65133
  • 21. F. BREZZI AND M. FORTIN, Mixed and hybrid finite element methods, Springer, 1991. MR 92d:65187
  • 22. P. CIARLET, The Finite Element Method for Elliptic Problems, vol. 4 of Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1978. MR 58:25001
  • 23. P. CIARLET, JR. AND J. ZOU, Fully discrete finite element approaches for time-dependent Maxwell equations, Numer. Math., 82 (1999), pp. 193-219. MR 2000c:65083
  • 24. M. CLEMENS AND T. WEILAND, Transient eddy current calculation with the FI-method, IEEE Trans. Magnetics, 35 (1999), pp. 1163-1166.
  • 25. G. COHEN AND P.MONK, Mur-Nédélec finite element schemes for Maxwell's equations,, Comp. Meth. Appl. Mech. Eng., 169 (1999), p. 197. MR 99k:78002
  • 26. M. COSTABEL AND M. DAUGE, Singularities of Maxwell's equations on polyhedral domains, in Analysis, Numerics and Applications of Differential and Integral Equations, M. Bach, ed., vol. 379 of Longman Pitman Res. Notes Math. Ser., Addison Wesley, Harlow, 1998, pp. 69-76. CMP 98:09
  • 27. M. COSTABEL, M. DAUGE, AND S. NICAISE, Singularities of Maxwell interface problems, M$\mbox{}^2$AN, 33 (1999), pp. 627-649. MR 2001g:78005
  • 28. P. DULAR, J.-Y. HODY, A. NICOLET, A. GENON, AND W. LEGROS, Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms, IEEE Trans Magnetics, MAG-30 (1994), pp. 2980-2983.
  • 29. V. GIRAULT, Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ${\mathbb R}^3$, vol. 1431 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1989, pp. 201-218. MR 91k:65143
  • 30. V. GIRAULT AND P. RAVIART, Finite element methods for Navier-Stokes equations, Springer, Berlin, 1986. MR 88b:65129
  • 31. J. GOPALAKRISHNAN AND J. PASCIAK, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell Equations, Tech. Rep., Department of Mathematics, Texas A&M University, June 2000.
    Submitted to Math. Comp.
  • 32. V. GRADINARU AND R. HIPTMAIR, Whitney elements on pyramids, Electron. Trans. Numer. Anal., 8 (1999), pp. 154-168. MR 2001f:65134
  • 33. P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. MR 86m:35044
  • 34. R. HIPTMAIR, Multigrid method for $H(\operatorname{div})$ in three dimensions, ETNA, 6 (1997), pp. 133-152. MR 99c:65232
  • 35. -, Canonical construction of finite elements, Math. Comp., 68 (1999), pp. 1325-1346. MR 2000b:65214
  • 36. -, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36 (1999), pp. 204-225. MR 99j:65229
  • 37. R. HIPTMAIR AND R. HOPPE, Multilevel preconditioning for mixed problems in three dimensions, Numer. Math., 82 (1999), pp. 253-279. MR 2000c:65104
  • 38. R. HIPTMAIR AND K. NEYMEYR, Multilevel method for mixed eigenproblems, Report 159, SFB 382, Universität Tübingen, Tübingen, Germany, 2001.
    To appear in SIAM J. Sci. Comp.
  • 39. R. HIPTMAIR, T. SCHIEKOFER, AND B. WOHLMUTH, Multilevel preconditioned augmented Lagrangian techniques for $2$nd order mixed problems, Computing, 57 (1996), pp. 25-48. MR 98d:65140
  • 40. R. HIPTMAIR AND A. TOSELLI, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions., in Parallel Solution of Partial Differential Equations, P. Bjorstad and M. Luskin, eds., no. 120 in IMA Volumes in Mathematics and its Applications, Springer, Berlin, 1999, pp. 181-202. MR 2002d:65123
  • 41. M. HOCHBRUCK AND C. LUBICH, Error analysis of Krylov methods in a nutshell, SIAM J. Sci. Comput., 19 (1998), pp. 695-701. CMP 98:11
  • 42. P. KOTIUGA, On making cuts for magnetic scalar potentials in multiply connected regions, J. Appl. Phys., 61 (1987), pp. 3916-3918.
  • 43. P. LIONS, On the Schwarz alternating method, in Proceedings of the First International Symposium of Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant, and J. Periaux, eds., SIAM, 1987, pp. 1-42. MR 90a:65248
  • 44. P. MONK, A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., 28 (1991), pp. 1610-1634. MR 92j:65173
  • 45. -, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal., 29 (1992), pp. 714-729. MR 93k:65096
  • 46. P. MONK AND L. DEMKOWICZ, Discrete compactness and the approximation of Maxwell's equations in $\mathbb{R} ^3$, Math. Comp., 70 (2001), pp. 507-523.
    Published online February 23, 2000. MR 2001g:65156
  • 47. J. NÉDÉLEC, Mixed finite elements in $R^3$, Numer. Math., 35 (1980), pp. 315-341. MR 81k:65125
  • 48. J. N´EDÉLEC, A new family of mixed finite elements in $R^3$, Numer. Math., 50 (1986), pp. 57-81. MR 88e:65145
  • 49. P. OSWALD, On function spaces related to the finite element approximation theory, Z. Anal. Anwendungen, 9 (1990), pp. 43-64. MR 91g:65246
  • 50. -, Two remarks on multilevel preconditioners, Tech. Rep. 91/1, Methematisches Institut, FSU Jena, 1991.
  • 51. -, On discrete norm estimates related to multilevel preconditioners in the finite element method, in Constructive Theory of Functions, Proc. Int. Conf. Varna 1991, K. Ivanov, P. Petrushev, and B. Sendov, eds., Bulg. Acad. Sci., 1992, pp. 203-214.
  • 52. -, On the robustness of the BPX-preconditioner with respect to jumps in the coefficients, Math. Comp., 68 (1999), pp. 633-650. MR 99i:65143
  • 53. P. A. RAVIART AND J. M. THOMAS, A Mixed Finite Element Method for Second Order Elliptic Problems, vol. 606 of Springer Lecture Notes in Mathematics, Springer, Ney York, 1977, pp. 292-315. MR 58:3547
  • 54. L. R. SCOTT AND Z. ZHANG, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483-493. MR 90j:65021
  • 55. B. SMITH, P. BJØRSTAD, AND W. GROPP, Domain decomposition, Cambridge University Press, Cambridge, 1996. MR 98g:65003
  • 56. A. TOSELLI, Overlapping Schwarz methods for Maxwell's equations in three dimensions, Numer. Math., 86 (2000), pp. 733-752. MR 2001h:65137
  • 57. J. VON NEUMANN, The Geometry of Orhtogonal Spaces Vol II: Functional operators, vol. 22 of Annals of Math. Studies, Princeton University Press, Princeton, 1950.
    Reprint of lecture notes of 1933. MR 11:599e
  • 58. H. WHITNEY, Geometric Integration Theory, Princeton University Press, Princeton, 1957. MR 19:309c
  • 59. J. XU, Iterative methods by space decomposition and subspace correction, SIAM Review, 34 (1992), pp. 581-613. MR 93k:65029
  • 60. -, An introduction to multilevel methods, in Wavelets, Multilevel Methods and Elliptic PDEs, M. Ainsworth, K. Levesley, M. Marletta, and W. Light, eds., Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford, 1997, pp. 213-301. MR 99d:65329
  • 61. J. XU AND L. ZIKATANOV, The method of alternating projections and the method of subspace corrections in Hilbert space, Report AM 223, Department of Mathematics, PennState University, College Park, PA, June 2000.
    Submitted.
  • 62. H. YSERENTANT, On the multi-level splitting of finite element spaces, Numer. Math., 58 (1986), pp. 379-412. MR 88d:65068a
  • 63. -, Old and new convergence proofs for multigrid methods, Acta Numerica, (1993), pp. 285-326. MR 94i:65128
  • 64. X. ZHANG, Multilevel Schwarz methods, Numer. Math., 63 (1992), pp. 521-539. MR 93h:65047

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N55, 65N30, 35Q60

Retrieve articles in all journals with MSC (2000): 65N55, 65N30, 35Q60


Additional Information

R. Hiptmair
Affiliation: Sonderforschungsbereich 382, Universität Tübingen, 72076 Tübingen, Germany
Address at time of publication: Seminar für Angewandte Mathematik, ETH Zürich, CH-8092 Zürich, Switzerland
Email: hiptmair@na.uni-tuebingen.de, ralf@hiptmair.de

DOI: https://doi.org/10.1090/S0025-5718-02-01468-0
Keywords: Edge elements, multilevel methods, stable BPX-type splittings, multigrid in $\boldsymbol{H}(\textbf{curl};\Omega)$, Helmholtz-decomposition
Received by editor(s): November 6, 2000
Received by editor(s) in revised form: August 13, 2001, and September 19, 2001
Published electronically: October 18, 2002
Additional Notes: This work was supported by DFG as part of SFB 382
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society