Sums of heights of algebraic numbers
Author:
Gregory P. Dresden
Journal:
Math. Comp. 72 (2003), 14871499
MSC (2000):
Primary 11R04, 11R06; Secondary 12D10
Published electronically:
December 6, 2002
MathSciNet review:
1972748
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For , we consider the set . The polynomials are in , with only mild restrictions, and is the Weil height of . We show that this set is dense in for some effectively computable limit point .
 1.
M.J.
Bertin, The operator 𝑥+(1/𝑥)2 and the reciprocal
integers, Number theory (Ottawa, ON, 1996) CRM Proc. Lecture Notes,
vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 17–23.
MR
1684587 (2000e:11131)
 2.
E.
Bombieri, A.
J. Van der Poorten, and J.
D. Vaaler, Effective measures of irrationality for cubic extensions
of number fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
23 (1996), no. 2, 211–248. MR 1433423
(98d:11083)
 3.
Christophe
Doche, On the spectrum of the ZhangZagier
height, Math. Comp. 70
(2001), no. 233, 419–430. MR 1681120
(2001f:11181), http://dx.doi.org/10.1090/S0025571800011832
 4.
Christophe
Doche, ZhangZagier heights of perturbed polynomials, J.
Théor. Nombres Bordeaux 13 (2001), no. 1,
103–110 (English, with English and French summaries). 21st
Journées Arithmétiques (Rome, 2001). MR 1838073
(2002f:11080)
 5.
G. Dresden, Spectra of heights over certain finite groups, Ph.D. thesis, The University of Texas at Austin, August 1997.
 6.
Gregory
P. Dresden, Orbits of algebraic numbers with low
heights, Math. Comp. 67
(1998), no. 222, 815–820. MR 1468942
(98h:11128), http://dx.doi.org/10.1090/S0025571898009636
 7.
V.
Flammang, Sur la longueur des entiers algébriques totalement
positifs, J. Number Theory 54 (1995), no. 1,
60–72 (French, with English summary). MR 1352636
(96i:11129), http://dx.doi.org/10.1006/jnth.1995.1101
 8.
V.
Flammang, Two new points in the spectrum of the
absolute Mahler measure of totally positive algebraic integers, Math. Comp. 65 (1996), no. 213, 307–311. MR 1320894
(96d:11124), http://dx.doi.org/10.1090/S0025571896006643
 9.
G.
Rhin and C.
J. Smyth, On the Mahler measure of the composition of two
polynomials, Acta Arith. 79 (1997), no. 3,
239–247. MR 1438826
(98b:11109)
 10.
A.
Schinzel, On the product of the conjugates outside the unit circle
of an algebraic number, Acta Arith. 24 (1973),
385–399. Collection of articles dedicated to Carl Ludwig Siegel on
the occasion of his seventyfifth birthday. IV. MR 0360515
(50 #12963)
A.
Schinzel, Addendum to the paper: “On the product of the
conjugates outside the unit circle of an algebraic number” (Acta
Arith. 24 (1973), 385–399), Acta Arith. 26
(1974/75), no. 3, 329–331. MR 0371853
(51 #8070)
 11.
C.
J. Smyth, On the measure of totally real algebraic integers,
J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 2,
137–149. MR
607924 (82j:12002a)
 12.
C.
J. Smyth, On the measure of totally real
algebraic integers. II, Math. Comp.
37 (1981), no. 155, 205–208. MR 616373
(82j:12002b), http://dx.doi.org/10.1090/S00255718198106163737
 13.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 14.
D.
Zagier, Algebraic numbers close to both 0 and
1, Math. Comp. 61 (1993),
no. 203, 485–491. MR 1197513
(94c:11104), http://dx.doi.org/10.1090/S00255718199311975139
 15.
Shouwu
Zhang, Positive line bundles on arithmetic surfaces, Ann. of
Math. (2) 136 (1992), no. 3, 569–587. MR 1189866
(93j:14024), http://dx.doi.org/10.2307/2946601
 1.
 M.J. Bertin, The operator and the reciprocal integers, Number theory (Ottawa, ON, 1996), Amer. Math. Soc., Providence, RI, 1999, pp. 1723. MR 2000e:11131
 2.
 E. Bombieri, A. J. van der Poorten, and J. D. Vaaler, Effective measures of irrationality for cubic extension of number fields, Annali della Scuola Normale Superiore di Pisa Scienze Fisiche e Matematiche 23 (1996), no. 4, 211248. MR 98d:11083
 3.
 Christophe Doche, On the spectrum of the ZhangZagier height, Math. Comp. 70 (2001), no. 233, 419430. MR 2001f:11181
 4.
 , ZhangZagier heights of perturbed polynomials, J. Théor. Nombres Bordeaux 13 (2001), no. 1, 103110, 21st Journées Arithmétiques (Rome, 2001). MR 2002f:11080
 5.
 G. Dresden, Spectra of heights over certain finite groups, Ph.D. thesis, The University of Texas at Austin, August 1997.
 6.
 , Orbits of algebraic numbers with low heights, Math. Comp. 67 (1998), no. 222, 815820. MR 98h:11128
 7.
 V. Flammang, Sur la longueur des entiers algébriques totalement positifs, J. Number Theory 54 (1995), 6072. MR 96i:11129
 8.
 V. Flammang, Two new points in the spectrum of the absolute Mahler measure of totally positive algebraic integers, Math. Comp. 65 (1996), no. 213, 307311. MR 96d:11124
 9.
 G. Rhin and C. J. Smyth, On the Mahler measure of the composition of two polynomials, Acta Arith. 79 (1997), no. 3, 239247. MR 98b:11109
 10.
 A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385399. MR 50:12963; MR 51:8070
 11.
 C. J. Smyth, On the measure of totally real algebraic integers, J. Austral. Math. Soc. (Series A) 30 (1980), 137149. MR 82j:12002a
 12.
 , On the measure of totally real algebraic integers, II, Math. Comp. 37 (1981), no. 155, 205208. MR 82j:12002b
 13.
 G. Szegö, Orthogonal polynomials, American Mathematical Society, 1975. MR 51:8724
 14.
 D. Zagier, Algebraic numbers close to both and , Math. Comp. 61 (1993), no. 203, 485491. MR 94c:11104
 15.
 S. Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569587. MR 93j:14024
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
11R04,
11R06,
12D10
Retrieve articles in all journals
with MSC (2000):
11R04,
11R06,
12D10
Additional Information
Gregory P. Dresden
Affiliation:
Department of Mathematics, Washington & Lee University, Lexington, Virginia 244500303
Email:
dresdeng@wlu.edu
DOI:
http://dx.doi.org/10.1090/S0025571802014813
PII:
S 00255718(02)014813
Received by editor(s):
May 24, 1999
Received by editor(s) in revised form:
December 10, 2001
Published electronically:
December 6, 2002
Additional Notes:
I would like to thank Dr. C. J. Smyth and Dr. J. Vaaler, and I would also like to thank the referee for helpful comments and an improved proof of Theorem 6.1.
Article copyright:
© Copyright 2002
American Mathematical Society
