Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Sums of heights of algebraic numbers


Author: Gregory P. Dresden
Journal: Math. Comp. 72 (2003), 1487-1499
MSC (2000): Primary 11R04, 11R06; Secondary 12D10
DOI: https://doi.org/10.1090/S0025-5718-02-01481-3
Published electronically: December 6, 2002
MathSciNet review: 1972748
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $A_t(x) = f(x) - t\, g(x)$, we consider the set $\{ \sum_{A_t(\alpha) = 0} h(\alpha) : t \in \overline{\mathbb{Q} } \}$. The polynomials $f(x), g(x)$ are in $\mathbb{Z} [x]$, with only mild restrictions, and $h(\alpha)$ is the Weil height of $\alpha$. We show that this set is dense in $[d, \infty)$ for some effectively computable limit point $d$.


References [Enhancements On Off] (What's this?)

  • 1. M.-J. Bertin, The operator $x+(1/x)-2$ and the reciprocal integers, Number theory (Ottawa, ON, 1996), Amer. Math. Soc., Providence, RI, 1999, pp. 17-23. MR 2000e:11131
  • 2. E. Bombieri, A. J. van der Poorten, and J. D. Vaaler, Effective measures of irrationality for cubic extension of number fields, Annali della Scuola Normale Superiore di Pisa Scienze Fisiche e Matematiche 23 (1996), no. 4, 211-248. MR 98d:11083
  • 3. Christophe Doche, On the spectrum of the Zhang-Zagier height, Math. Comp. 70 (2001), no. 233, 419-430. MR 2001f:11181
  • 4. -, Zhang-Zagier heights of perturbed polynomials, J. Théor. Nombres Bordeaux 13 (2001), no. 1, 103-110, 21st Journées Arithmétiques (Rome, 2001). MR 2002f:11080
  • 5. G. Dresden, Spectra of heights over certain finite groups, Ph.D. thesis, The University of Texas at Austin, August 1997.
  • 6. -, Orbits of algebraic numbers with low heights, Math. Comp. 67 (1998), no. 222, 815-820. MR 98h:11128
  • 7. V. Flammang, Sur la longueur des entiers algébriques totalement positifs, J. Number Theory 54 (1995), 60-72. MR 96i:11129
  • 8. V. Flammang, Two new points in the spectrum of the absolute Mahler measure of totally positive algebraic integers, Math. Comp. 65 (1996), no. 213, 307-311. MR 96d:11124
  • 9. G. Rhin and C. J. Smyth, On the Mahler measure of the composition of two polynomials, Acta Arith. 79 (1997), no. 3, 239-247. MR 98b:11109
  • 10. A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399. MR 50:12963; MR 51:8070
  • 11. C. J. Smyth, On the measure of totally real algebraic integers, J. Austral. Math. Soc. (Series A) 30 (1980), 137-149. MR 82j:12002a
  • 12. -, On the measure of totally real algebraic integers, II, Math. Comp. 37 (1981), no. 155, 205-208. MR 82j:12002b
  • 13. G. Szegö, Orthogonal polynomials, American Mathematical Society, 1975. MR 51:8724
  • 14. D. Zagier, Algebraic numbers close to both $0$ and $1$, Math. Comp. 61 (1993), no. 203, 485-491. MR 94c:11104
  • 15. S. Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569-587. MR 93j:14024

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11R04, 11R06, 12D10

Retrieve articles in all journals with MSC (2000): 11R04, 11R06, 12D10


Additional Information

Gregory P. Dresden
Affiliation: Department of Mathematics, Washington & Lee University, Lexington, Virginia 24450-0303
Email: dresdeng@wlu.edu

DOI: https://doi.org/10.1090/S0025-5718-02-01481-3
Received by editor(s): May 24, 1999
Received by editor(s) in revised form: December 10, 2001
Published electronically: December 6, 2002
Additional Notes: I would like to thank Dr. C. J. Smyth and Dr. J. Vaaler, and I would also like to thank the referee for helpful comments and an improved proof of Theorem 6.1.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society