-error estimates for ``shifted'' surface spline interpolation on Sobolev space

Author:
Jungho Yoon

Journal:
Math. Comp. **72** (2003), 1349-1367

MSC (2000):
Primary 41A05, 41A15, 41A25, 41A30, 41A63

Published electronically:
December 18, 2002

MathSciNet review:
1972740

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The accuracy of interpolation by a radial basis function is usually very satisfactory provided that the approximant is reasonably smooth. However, for functions which have smoothness below a certain order associated with the basis function , no approximation power has yet been established. Hence, the purpose of this study is to discuss the -approximation order ( ) of interpolation to functions in the Sobolev space with . We are particularly interested in using the ``shifted'' surface spline, which actually includes the cases of the multiquadric and the surface spline. Moreover, we show that the accuracy of the interpolation method can be at least doubled when additional smoothness requirements and boundary conditions are met.

**[AS]**Milton Abramowitz and Irene A. Stegun (eds.),*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604****[BSW]**B. J. C. Baxter, N. Sivakumar, and J. D. Ward,*Regarding the 𝑝-norms of radial basis interpolation matrices*, Constr. Approx.**10**(1994), no. 4, 451–468. MR**1288640**, 10.1007/BF01303522**[BrS]**Susanne C. Brenner and L. Ridgway Scott,*The mathematical theory of finite element methods*, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR**1278258****[Bu1]**Kurt Jetter and Florencio I. Utreras (eds.),*Multivariate approximation: from CAGD to wavelets*, Series in Approximations and Decompositions, vol. 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR**1359541****[Bu2]**M. D. Buhmann,*Multivariate cardinal interpolation with radial-basis functions*, Constr. Approx.**6**(1990), no. 3, 225–255. MR**1054754**, 10.1007/BF01890410**[D]**N. Dyn,*Interpolation and approximation by radial and related functions*, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 211–234. MR**1090994****[DJLR]**N. Dyn, I. R. H. Jackson, D. Levin, and A. Ron,*On multivariate approximation by integer translates of a basis function*, Israel J. Math.**78**(1992), no. 1, 95–130. MR**1194962**, 10.1007/BF02801574**[DR]**N. Dyn and A. Ron,*Radial basis function approximation: from gridded centres to scattered centres*, Proc. London Math. Soc. (3)**71**(1995), no. 1, 76–108. MR**1327934**, 10.1112/plms/s3-71.1.76**[Du]**Jean Duchon,*Sur l’erreur d’interpolation des fonctions de plusieurs variables par les 𝐷^{𝑚}-splines*, RAIRO Anal. Numér.**12**(1978), no. 4, 325–334, vi (French, with English summary). MR**519016****[F]**Gerald B. Folland,*Real analysis*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications; A Wiley-Interscience Publication. MR**767633****[GS]**I. M. Gel′fand and G. E. Shilov,*Generalized functions. Vol. 1*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR**0435831****[H]**W.W. Hager,*Applied Numerical Linear Algebra*, Englewood Cliffs, N.J., Prentice Hall, 1988.**[L]**David Levin,*The approximation power of moving least-squares*, Math. Comp.**67**(1998), no. 224, 1517–1531. MR**1474653**, 10.1090/S0025-5718-98-00974-0**[LW]**Will Light and Henry Wayne,*On power functions and error estimates for radial basis function interpolation*, J. Approx. Theory**92**(1998), no. 2, 245–266. MR**1604931**, 10.1006/jath.1997.3118**[M]**Charles A. Micchelli,*Interpolation of scattered data: distance matrices and conditionally positive definite functions*, Constr. Approx.**2**(1986), no. 1, 11–22. MR**891767**, 10.1007/BF01893414**[MN1]**W. R. Madych and S. A. Nelson,*Multivariate interpolation and conditionally positive definite functions*, Approx. Theory Appl.**4**(1988), no. 4, 77–89. MR**986343****[MN2]**W. R. Madych and S. A. Nelson,*Multivariate interpolation and conditionally positive definite functions. II*, Math. Comp.**54**(1990), no. 189, 211–230. MR**993931**, 10.1090/S0025-5718-1990-0993931-7**[MN3]**W. R. Madych and S. A. Nelson,*Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation*, J. Approx. Theory**70**(1992), no. 1, 94–114. MR**1168377**, 10.1016/0021-9045(92)90058-V**[NW]**Francis J. Narcowich and Joseph D. Ward,*Norms of inverses and condition numbers for matrices associated with scattered data*, J. Approx. Theory**64**(1991), no. 1, 69–94. MR**1086096**, 10.1016/0021-9045(91)90087-Q**[P1]**Will Light (ed.),*Advances in numerical analysis. Vol. II*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. Wavelets, subdivision algorithms, and radial basis functions. MR**1172118****[P2]**M. J. D. Powell,*The uniform convergence of thin plate spline interpolation in two dimensions*, Numer. Math.**68**(1994), no. 1, 107–128. MR**1278451**, 10.1007/s002110050051**[S1]**Robert Schaback,*Error estimates and condition numbers for radial basis function interpolation*, Adv. Comput. Math.**3**(1995), no. 3, 251–264. MR**1325034**, 10.1007/BF02432002**[S2]**R. Schaback,*Approximation by radial basis functions with finitely many centers*, Constr. Approx.**12**(1996), no. 3, 331–340. MR**1405002**, 10.1007/s003659900017**[S3]**R. Schaback,*Improved error bounds for scattered data interpolation by radial basis functions*, Math. Comp.**68**(1999), no. 225, 201–216. MR**1604379**, 10.1090/S0025-5718-99-01009-1**[WS]**Zong Min Wu and Robert Schaback,*Local error estimates for radial basis function interpolation of scattered data*, IMA J. Numer. Anal.**13**(1993), no. 1, 13–27. MR**1199027**, 10.1093/imanum/13.1.13**[Y1]**J. Yoon,*Approximation in 𝐿_{𝑝}(𝐑^{𝐝}) from a space spanned by the scattered shifts of a radial basis function*, Constr. Approx.**17**(2001), no. 2, 227–247. MR**1814356**, 10.1007/s003650010033**[Y2]**J. Yoon,*Interpolation by Radial Basis Functions on Sobolev Space*, J. of Approx. Th.**112**(2001), 1-15.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
41A05,
41A15,
41A25,
41A30,
41A63

Retrieve articles in all journals with MSC (2000): 41A05, 41A15, 41A25, 41A30, 41A63

Additional Information

**Jungho Yoon**

Affiliation:
Department of Mathematics, Ewha Women’s University, Dae Hyun-Dong, Seo Dae Moon-Gu, Seoul 120-750, Korea

Email:
yoon@math.ewha.ac.kr

DOI:
https://doi.org/10.1090/S0025-5718-02-01498-9

Keywords:
Radial basis function,
interpolation,
surface spline,
``shifted'' surface spline

Received by editor(s):
April 4, 2000

Received by editor(s) in revised form:
September 5, 2001

Published electronically:
December 18, 2002

Article copyright:
© Copyright 2002
American Mathematical Society