On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions

Author:
Günther Grün

Journal:
Math. Comp. **72** (2003), 1251-1279

MSC (2000):
Primary 35K35, 35K55, 35K65, 35R35, 65M12, 65M60, 76D08

Published electronically:
January 8, 2003

MathSciNet review:
1972735

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present nonnegativity-preserving finite element schemes for a general class of thin film equations in multiple space dimensions. The equations are fourth order degenerate parabolic, and may contain singular terms of second order which are to model van der Waals interactions. A subtle discretization of the arising nonlinearities allows us to prove discrete counterparts of the essential estimates found in the continuous setting. By use of the entropy estimate, strong convergence results for discrete solutions are obtained. In particular, the limit of discrete fluxes will be identified with the flux in the continuous setting. As a by-product, first results on existence and positivity almost everywhere of solutions to equations with singular lower order terms can be established in the continuous setting.

**1.**J. Barrett, J. Blowey, and H. Garcke.

Finite element approximation of a fourth order nonlinear degenerate parabolic equation.*Numer. Math.*, 80:525-556, 1998. MR**99j:64144****2.**John W. Barrett, James F. Blowey, and Harald Garcke,*Finite element approximation of the Cahn-Hilliard equation with degenerate mobility*, SIAM J. Numer. Anal.**37**(1999), no. 1, 286–318 (electronic). MR**1742748**, 10.1137/S0036142997331669**3.**J. Barrett, J. Blowey, and H. Garcke.

On fully practical finite element approximations of degenerate Cahn-Hilliard systems. Math. Model. Numer. Anal., 35:713-748, 2001.**4.**J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, and R. Blossey.

Complex dewetting scenarios captured by thin film models.*Nature Materials*. In press.**5.**Elena Beretta, Michiel Bertsch, and Roberta Dal Passo,*Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation*, Arch. Rational Mech. Anal.**129**(1995), no. 2, 175–200. MR**1328475**, 10.1007/BF00379920**6.**J. I. Diaz, M. A. Herrero, A. Liñán, and J. L. Vázquez (eds.),*Free boundary problems: theory and applications*, Pitman Research Notes in Mathematics Series, vol. 323, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995. MR**1342322****7.**Francisco Bernis,*Finite speed of propagation and continuity of the interface for thin viscous flows*, Adv. Differential Equations**1**(1996), no. 3, 337–368. MR**1401398****8.**Francisco Bernis and Avner Friedman,*Higher order nonlinear degenerate parabolic equations*, J. Differential Equations**83**(1990), no. 1, 179–206. MR**1031383**, 10.1016/0022-0396(90)90074-Y**9.**A. L. Bertozzi and M. Pugh,*The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions*, Comm. Pure Appl. Math.**49**(1996), no. 2, 85–123. MR**1371925**, 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V**10.**Michiel Bertsch, Roberta Dal Passo, Harald Garcke, and Günther Grün,*The thin viscous flow equation in higher space dimensions*, Adv. Differential Equations**3**(1998), no. 3, 417–440. MR**1751951****11.**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****12.**Roberta Dal Passo, Harald Garcke, and Günther Grün,*On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions*, SIAM J. Math. Anal.**29**(1998), no. 2, 321–342 (electronic). MR**1616558**, 10.1137/S0036141096306170**13.**R. Dal Passo, L. Giacomelli, and G. Grün.

A waiting time phenomenon for thin film equations.*Ann. Scuola Norm. Sup. Pisa*, XXX:437-463, 2001. CMP**2002:11****14.**Charles M. Elliott and Harald Garcke,*On the Cahn-Hilliard equation with degenerate mobility*, SIAM J. Math. Anal.**27**(1996), no. 2, 404–423. MR**1377481**, 10.1137/S0036141094267662**15.**C. M. Elliott and A. M. Stuart,*The global dynamics of discrete semilinear parabolic equations*, SIAM J. Numer. Anal.**30**(1993), no. 6, 1622–1663. MR**1249036**, 10.1137/0730084**16.**G. Grün,*Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening*, Z. Anal. Anwendungen**14**(1995), no. 3, 541–574. MR**1362530**, 10.4171/ZAA/639**17.**G. Grün.

On the numerical simulation of wetting phenomena.

In W. Hackbusch and S. Sauter, editors,*Proceedings of the 15th GAMM-Seminar Kiel, Numerical methods of composite materials*. Vieweg-Verlag, Braunschweig. To appear.**18.**Günther Grün and Martin Rumpf,*Nonnegativity preserving convergent schemes for the thin film equation*, Numer. Math.**87**(2000), no. 1, 113–152. MR**1800156**, 10.1007/s002110000197**19.**G. Grün and M. Rumpf.

Simulation of singularities and instabilities in thin film flow.*Euro. J. Appl. Math.*, 12:293-320, 2001.**20.**C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, and G. Grün.

Satellite hole formation during dewetting: experiment and simulation.

Submitted for publication.**21.**A. Oron, S.H. Davis, and S.G. Bankoff.

Long-scale evolution of thin liquid films.*Reviews of Modern Physics*, 69:932-977, 1997.**22.**Kôsaku Yosida,*Functional analysis*, 4th ed., Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123. MR**0350358****23.**L. Zhornitskaya and A. L. Bertozzi,*Positivity-preserving numerical schemes for lubrication-type equations*, SIAM J. Numer. Anal.**37**(2000), no. 2, 523–555. MR**1740768**, 10.1137/S0036142998335698

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
35K35,
35K55,
35K65,
35R35,
65M12,
65M60,
76D08

Retrieve articles in all journals with MSC (2000): 35K35, 35K55, 35K65, 35R35, 65M12, 65M60, 76D08

Additional Information

**Günther Grün**

Affiliation:
Universität Bonn, Institut für Angewandte Mathematik, Beringstr. 6, 53115 Bonn, Germany

Email:
gg@iam.uni-bonn.de

DOI:
https://doi.org/10.1090/S0025-5718-03-01492-3

Keywords:
{Lubrication approximation,
fourth order degenerate parabolic equations,
nonnegativity preserving,
finite elements}

Received by editor(s):
August 14, 2000

Received by editor(s) in revised form:
September 21, 2001

Published electronically:
January 8, 2003

Article copyright:
© Copyright 2003
American Mathematical Society