ODD PERFECT NUMBERS
HAVE A PRIME FACTOR EXCEEDING 10^7

PAUL M. JENKINS

ABSTRACT. It is proved that every odd perfect number is divisible by a prime
greater than 10^7.

1. INTRODUCTION

A perfect number is a positive integer N which satisfies $\sigma(N) = 2N$, where $\sigma(N)$
denotes the sum of the positive divisors of N. All known perfect numbers are even; it is
well known that even perfect numbers have the form $N = 2^{p-1}(2^p - 1)$, where p
is prime and $2^p - 1$ is a Mersenne prime. It is conjectured that no odd perfect
numbers exist, but this has yet to be proven. However, certain conditions that a
hypothetical odd perfect number must satisfy have been found. Brent, Cohen, and
teRiele [3] proved that such a number must be greater than 10^{300}. Chein [4] and
Hagis [6] each showed that an odd perfect number must have at least 8 distinct
prime factors. The best known lower bound for the largest prime divisor of an odd
perfect number was raised from 100110 in 1975 by Hagis and McDaniel [8] to 300000 in
Cohen [7] proved that the largest prime divisor of an odd perfect number must be
greater than 10^6. Iannucci [9], [10] showed that the second largest prime divisor
must exceed 10^4 and that the third largest prime divisor must be greater than 100.

This paper improves the lower bound for the largest prime divisor of an odd
perfect number, proving that

Theorem 1.1. The largest prime divisor of an odd perfect number exceeds 10^7.

The proof follows the method used by Hagis and Cohen.

2. RAISING THE BOUND TO 10^7

The proof of Theorem 1.1 is by contradiction. Let N denote an odd perfect
number with no prime divisors exceeding 10^7.

Nonnegative integers will be symbolized by a, b, c, \ldots, and p, q and r will represent
odd prime numbers. The notation $p^a \| n$ means that $p^a \mid n$ and $p^{a+1} \nmid n$. The dth
cyclotomic polynomial will be denoted by F_d, so that $F_p(x) = 1 + x + x^2 + \cdots + x^{p-1}$.

If p and m are relatively prime, $h(p, m)$ will represent the order of p modulo m.

It is well known that $N = p_0^{a_0}p_1^{a_1} \cdots p_u^{a_u}$, where the p_i are distinct odd primes,
$p_0 \equiv a_0 \equiv 1 \mod 4$, and $2|a_i$ if $i > 0$. We call p_0 the special prime.
Lemma 2.1. It is true that $q \mid F_m(p)$ if and only if $m = q^b h(p; q)$. If $b > 0$, then $q \mid F_m(p)$. If $b = 0$, then $q \equiv 1 \pmod{m}$.

It follows from Lemma 2.1 that, for r prime,

Lemma 2.2. If $q \mid F_r(p)$, then either $r = q$ and $p \equiv 1 \pmod{q}$, so that $q \mid F_r(p)$, or $q \equiv 1 \pmod{r}$.

Lemma 2.3. If $q = 3$ or 5 and $m > 1$ is odd, then $q \mid F_m(p)$ (and $q \mid F_m(p)$) if and only if $m = q^b$ and $p \equiv 1 \pmod{q}$.

A result originally from Bang [1], as documented by Pomerance [13], shows that

Lemma 2.4. If p is an odd prime and $m \geq 3$, then $F_m(p)$ has at least one prime factor q such that $q \equiv 1 \pmod{m}$.

It is obvious that the set of primes p_i dividing N is identical to the set of odd prime factors of the $F_d(p_i)$ in (2.1), so all prime factors of each $F_d(p_i)$ must be less than 10^7. In particular, if r is a prime divisor of $a_i + 1$, then every prime factor of $F_r(p_i)$ must be less than 10^7.

Define $F_r(p)$ to be acceptable if every prime divisor of $F_r(p)$ is less than 10^7. It follows that if $r > 5000000$, then $F_r(p)$ is unacceptable for an odd prime p.

Computer searches showed that if $3 \leq p < 10^7$ and $r \geq 7$, then $F_r(p)$ is unacceptable except for 143 pairs of values of p and r. This table appears in [11], which can be found online at http://www.math.byu.edu/OddPerf.

We will show that for each of these 143 pairs (r, p), $F_r(p)$ cannot appear as a factor of N on the right-hand side of (2.1)

Lemma 2.5. No prime in the set X of “small” primes

\[X = \{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 61, 71, 113, 127, 131, 151, 197, 211, 239, 281, 1093\}. \]

divides N.

These primes are considered in the order

\[1093, 151, 31, 127, 19, 11, 7, 23, 31, 37, 43, 61, 13, 3, 5, 29, 43, 17, 71, 113, 197, 211, 239, 281. \]

A contradiction is derived in the case that each of these primes divides N. For example, after proving that $1093 \nmid N$, the proof that $151 \nmid N$ is as follows:

Assume that $151 \mid N$. One value of $F_r(151)$ must divide $2N$, where r is prime. List the values of $F_r(151)$ from the table of acceptable values of $F_r(p)$ and for $r = 3, 5,$ ($r = 2$ is not considered because $151 \not\equiv 1 \pmod{4}$, so 151 is not the special prime.)

No such values appear in the table, $F_3(151) = 3 \cdot 7\cdot 1093$ (contradicting $1093 \nmid N$), and $F_5(151) = 5\cdot 104670301$ is unacceptable. Thus $151 \nmid N$. If an acceptable value of $F_r(151)$ existed, each of its odd prime factors would divide N, and we would...
select one such factor and iterate this process until a contradiction is reached. The complete proof of this lemma appears in the appendix to [11].

When these primes are eliminated as factors of $F_i(p)$, most pairs (r, p) in the table are eliminated. From the remaining values, it follows that if $r > 5$, then

$$p \in \{67, 173, 607, 619, 653, 1063, 1453, 2503, 4289, 5953, 9103, 9397, 10889, 12917, 19441, 63587, 109793, 113287, 191693, 6450307, 7144363\}.$$

Each of these primes is then eliminated in a manner similar to that used to eliminate the “small” primes. This proves

Lemma 2.6. If $p^a || N$ and p is not the special prime p_0, then $a + 1 = 3^b \cdot 5^c$, where $(b + c) > 0$. If $p_0^a || N$, then $a_0 + 1 = 2 \cdot 3^b \cdot 5^c$, where $(b + c) \geq 0$.

Let $S = \{47, 53, 59, \ldots \}$ be the set of all primes p such that $p \equiv \pm 1 \pmod{3}$, $p \equiv \pm 1 \pmod{5}$ and $37 < p < 10^7$.

If $p | N$ and $p | F_2(p_i)$ and $d \neq 2$ then, since $d|\langle a_i + 1 \rangle$, either $3|d$ or $5|d$ by Lemma 2.6. By Lemmas 2.1 and 2.5, either $p \equiv 1 \pmod{3}$ or $p \equiv 1 \pmod{5}$, so $p \notin S$.

Suppose that $p_i \in S$ and $p_i^a || N$ and $p_i | F_2(p_0)$. Then $p_i^{a_i} || F_2(p_0)$ from the previous statement, and if two elements of S were divisors of $F_2(p_0)$, then $F_2(p_0) = p_0 + 1 \geq 2 \cdot 47^2 \cdot 53^2 = 12410162$. This is impossible, since $p_0 < 10^7$. Thus, at most one element of S can divide $F_2(p_0)$. Note also that if $p_0 \in S$, then $p_0 \equiv 2 \pmod{3}$ and $3|p_0 + 1 = F_2(p_0)$, contradicting Lemma 2.5. Thus, $p_0 \notin S$.

We have proved

Lemma 2.7. The number N is divisible by at most one element of S. If there is such an element s, then \(s \neq p_0 \) and $s \geq 47$.

A computer search showed that S has 249278 elements, and that

$$S^* = \prod_{p \in S} \frac{p}{p - 1} > 1.7331909144375899931.$$

Let $T = \{61, 151, 181, \ldots \}$ be the set of all primes p such that $p \equiv 1 \pmod{15}$ and $37 < p < 10^7$.

Suppose that $p_i \in T$ and $p_i \neq p_0$. If $p_i^a || N$, then either $3|\langle a_i + 1 \rangle$ or $5|\langle a_i + 1 \rangle$ by Lemma 2.6. By 2.1 and Lemma 2.3, either $F_3(p_i) || N$, in which case $3|N$, or $F_5(p_i) || N$, in which case $5|N$. In either case Lemma 2.5 is contradicted, so $p_i \nmid N$.

Thus,

Lemma 2.8. The number N is divisible by at most one element of T. If there is such an element it is p_0, and then $p_0 \geq 61$.

A computer search showed that T has 83002 elements, and that

$$T^* = \prod_{p \in T} \frac{p}{p - 1} > 1.1791835683407662159.$$

Let $U = \{73, 79, 103, \ldots \}$ be the set of all primes p such that $p \equiv \pm 1 \pmod{3}$, $p \equiv \pm 1 \pmod{5}$, $F_3(p)$ has a prime factor greater than 10^7, and $37 < p < 10^7$.

Suppose $p_i \in U$ and $p_i \neq p_0$. If $p_i^a || N$, then by Lemma 2.6 either $3|\langle a_i + 1 \rangle$ or $5|\langle a_i + 1 \rangle$. If $3|\langle a_i + 1 \rangle$, then $F_3(p_i) || N$ and $3|N$, contradicting Lemma 2.5. If $5|\langle a_i + 1 \rangle$, then $F_5(p_i) || N$ and N has a prime factor greater than 10^7, a contradiction.

Thus, $p_i \nmid N$.

It is, therefore, true that
Lemma 2.9. The number N is divisible by at most one element of U. If there is such an element it is p_0, and then $p_0 \geq 73$.

A computer search showed that U has 694 elements less than 20000, and that

$$U^* = \prod_{p \in U} \frac{p}{p-1} > \prod_{p \in \mathbb{P}_{\leq 20000}} \frac{p}{p-1} > 1.239225225.$$ \tag{2.4}

Let $V = \{3221, 3251, 3491, \ldots\}$ be the set of all primes p such that $p \equiv 1 \pmod{5}, p \not\equiv 1 \pmod{3}, F_3(p)$ has a prime factor greater than 10^7, and $37 < p < 10^7$.

Suppose $p_i \in V$. Since $p_i \not\equiv 1 \pmod{3}$, it must be true that $p_i \equiv 2 \pmod{3}$ and thus that $3|(p_i + 1) = F_2(p_i)$. But $F_2(p_0)|N$ and $3 \nmid N$, so $p_i \neq p_0$. If $p_i^n|N$, then by Lemma 2.6 either $3|(a_i + 1)$ or $5|(a_i + 1)$. If $5|(a_i + 1)$, then $F_5(p_i)|N$ and $5|N$, contradicting Lemma 2.6. If $3|(a_i + 1)$, then $F_3(p_i)|N$ and N has a factor greater than 10^7, a contradiction. Thus, $p_i \nmid N$.

It is, therefore, true that

Lemma 2.10. The number N is not divisible by any element of V.

A computer search showed that V has 57 elements less than 20000, and that

$$V^* = \prod_{p \in V} \frac{p}{p-1} > \prod_{p \in \mathbb{P}_{\leq 20000}} \frac{p}{p-1} > 1.006054597.$$ \tag{2.5}

Note that $S, T, U,$ and V are pairwise disjoint.

There are 664567 primes p such that $37 < p < 10^7$, and

$$P^* = \prod_{41 \leq p < 10^7} \frac{p}{p-1} < 4.269448664996309337.$$ \tag{2.6}

If $p^n|N$, then

$$1 < \frac{\sigma(p^n)/p^n}{\sigma(p^n+1)/p^n} = \frac{(p^{n+1} - 1)/(p^n(p-1)) < p/(p-1)}.$$

Since σ is a multiplicative function,

$$\frac{\sigma(N)}{N} = \frac{\sigma(p_0^{n_0})\sigma(p_1^{n_1}) \cdots}{p_0n_0p_1n_1 \cdots} < \prod_{i=0}^{n} \frac{p_i}{p_i-1}.$$

From Lemma 2.6, $p_i > 37$. Since $x/(x-1)$ is monotonic decreasing for $x > 1$, it follows that if $p_i \in S$, then $p_i/(p_i-1) < 47/46$, and if $p_i \in T$ or U, then $p_i/(p_i-1) < 61/60$. Thus, it follows from Lemmas 2.7, 2.10 and inequalities (2.1)–(2.6) that

$$2 = \frac{\sigma(N)}{N} < \prod_{i=0}^{n} \frac{p_i}{p_i-1} < \frac{47 \cdot 61}{46 \cdot 60} \frac{P^*}{S^*T^*U^*V^*} < 1.740567.$$ \tag{2.7}

This contradiction proves Theorem 1.1.
3. INTERESTING DETAILS ON THE COMPUTER SEARCHES

These arguments follow closely those appearing in Section 7 of Hagis and Cohen’s paper [4].

Let \(Q(r) \) be the product of all primes less than \(10^7 \) and congruent to 1 (mod \(r \)). If \(2142 < r < 5000000 \), a computer search showed that if \(10^2 < p < 10^7 \), then \(Q(r)^2 \leq 10^{2(r-1)} < p^{r-1} < F_r(p) \). Additionally, if \(q < 10^7 \), then \(q^3 \nmid F_r(p) \), except that \(60647^3 \| F_{20321}(6392117) \) and \(10709^3 \| F_{2677}(6619441) \).

These and other elementary computations lead to the conclusion that if \(r > 2142 \) and \(10^2 < p < 10^7 \), then \(F_r(p) \) has a prime factor greater than \(10^7 \).

Suppose that \(1472 < r < 2142 \) and \(10^2 < p < 10^7 \). A computer search showed that if \(q < 10^7 \), then \(q^3 \nmid F_r(p) \), except that \(3119^3 \| F_{1559}(146917) \) and \(2999^3 \| F_{1499}(8474027) \), and \(q^2 \| F_r(p) \) for at most one \(q \) for each \(F_r(p) \). Searches also showed that \(10^7 \cdot Q(r) < 10^{2(r-1)} \) for all \(r \) in this range.

Again, it follows after additional computations that if \(1472 < r < 2142 \) and \(10^2 < p < 10^7 \), then \(F_r(p) \) has a prime factor greater than \(10^7 \).

For \(7 \leq r < 1472 \) and \(p < 10^7 \), more computation was necessary. For each \(F_r(p) \), the primes \(q < 10^7 \) that divide \(F_r(p) \) were determined. It is easily seen that \(F_r(p) \) has a prime factor greater than \(10^7 \) if and only if

\[
\prod_{q^b \mid F_r(p), q < 10^7} q^b < p^{r-1}.
\]

In this manner, a table of acceptable values of \(F_r(p) \) was generated.

The UBASIC and MAPLE programs used in the proof of Theorem 1.4 can be found online at http://www.math.byu.edu/OddPerf.

4. CONCLUDING REMARKS

Let \(R \) be the largest prime factor of the odd perfect number \(N \). It has been shown here that \(R > 10^7 \). It seems probable that this proof could be extended to raise the lower bound for \(R \), using the same methods, since the inequality proving the theorem is much stronger than is necessary and could be strengthened even further by calculating \(U^* \) and \(V^* \) for the entire sets \(U \) and \(V \) instead of just the elements less than 20000. Unfortunately, the time that would be required to find acceptable values of \(F_r(p) \) for \(r \geq 7 \) for a larger lower bound seems to be great enough to make this computation impractical. If \(\pi(x) \) is the number of primes not exceeding \(x \), then to generate this table for a lower bound of \(R \) for the largest prime divisor of \(N \), \(\pi(R) \cdot \pi(R/2) \) values of \(F_r(p) \) must be examined for acceptability.

Hagis and Cohen [7] used approximately 700 hours of computing time proving that \(R \geq 10^6 \), using a CYBER 860 and a 486 PC. The computations in this paper required approximately 2930 hours of processor time on a dual-processor 866 MHz Pentium III and approximately 22870 hours of processor time on twenty-two 300 MHz Pentium II’s. The bound was increased only by a factor of 10, but the time required, even with advances in computer technology, increased by a factor of 36.

REFERENCES

1. A. Bang, Taltheoretiske undersøgelser, Tidsskrift Math. 5 IV (1886), 70–80, 130–137.

6. P. Hagis, Jr., *Outline of a proof that every odd perfect number has at least eight prime factors*, Mathematics of Computation 35 (1980), 1027–1032. MR 81k:10004

DEPARTMENT OF MATHEMATICS, BRIGHAM YOUNG UNIVERSITY, PROVO, UTAH 84602

E-mail address: pmj5@math.byu.edu