Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

The approximate inverse in action II: convergence and stability


Authors: Andreas Rieder and Thomas Schuster
Journal: Math. Comp. 72 (2003), 1399-1415
MSC (2000): Primary 65J10, 65R10
Published electronically: March 26, 2003
MathSciNet review: 1972743
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The approximate inverse is a scheme for constructing stable inversion formulas for operator equations. Originally, it is defined on $L^2$-spaces. In the present article we extend the concept of approximate inverse to more general settings which allow us to investigate the discrete version of the approximate inverse which actually underlies numerical computations. Indeed, we show convergence if the discretization parameter tends to zero. Further, we prove stability, that is, we show the regularization property. Finally we apply the results to the filtered backprojection algorithm in 2D-tomography to obtain convergence rates.


References [Enhancements On Off] (What's this?)

  • 1. J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 0263214
  • 2. A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365, 10.1002/cpa.3160450502
  • 3. Wolfgang Dahmen, Angela Kunoth, and Karsten Urban, Biorthogonal spline wavelets on the interval—stability and moment conditions, Appl. Comput. Harmon. Anal. 6 (1999), no. 2, 132–196. MR 1676771, 10.1006/acha.1998.0247
  • 4. Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1408680
  • 5. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177
  • 6. Alfred Karl Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks], B. G. Teubner, Stuttgart, 1989 (German). MR 1002946
  • 7. A. K. Louis, Corrigendum: “Approximate inverse for linear and some nonlinear problems” [Inverse Problems 11 (1995), no. 6, 1211–1223; MR1361769 (96f:65068)], Inverse Problems 12 (1996), no. 2, 175–190. MR 1382237, 10.1088/0266-5611/12/2/005
  • 8. A. K. Louis, A unified approach to regularization methods for linear ill-posed problems, Inverse Problems 15 (1999), no. 2, 489–498. MR 1684469, 10.1088/0266-5611/15/2/009
  • 9. A. K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind, Inverse Problems 6 (1990), no. 3, 427–440. MR 1057035
  • 10. F. Natterer, The mathematics of computerized tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 856916
  • 11. Peter Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik. [Teubner Scripts on Numerical Mathematics], B. G. Teubner, Stuttgart, 1994. Theory and applications. MR 1312165
  • 12. D. A. Popov, On convergence of a class of algorithms for the inversion of the numerical Radon transform, Mathematical problems of tomography, Transl. Math. Monogr., vol. 81, Amer. Math. Soc., Providence, RI, 1990, pp. 7–65. MR 1104013
  • 13. Andreas Rieder, Principles of reconstruction filter design in 2D-computerized tomography, Radon transforms and tomography (South Hadley, MA, 2000) Contemp. Math., vol. 278, Amer. Math. Soc., Providence, RI, 2001, pp. 207–226. MR 1851489, 10.1090/conm/278/04606
  • 14. Andreas Rieder and Thomas Schuster, The approximate inverse in action with an application to computerized tomography, SIAM J. Numer. Anal. 37 (2000), no. 6, 1909–1929 (electronic). MR 1766853, 10.1137/S0036142998347619
  • 15. Larry L. Schumaker, Spline functions: basic theory, John Wiley & Sons, Inc., New York, 1981. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 606200
  • 16. L. A. SHEPP AND B. F. LOGAN, The Fourier reconstruction of a head section, IEEE Trans. Nuc. Sci., 21 (1974), pp. 21-43.
  • 17. J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. MR 895589

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65J10, 65R10

Retrieve articles in all journals with MSC (2000): 65J10, 65R10


Additional Information

Andreas Rieder
Affiliation: Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung (IWRMM), Universität Karlsruhe, 76128 Karlsruhe, Germany
Email: andreas.rieder@math.uni-karlsruhe.de

Thomas Schuster
Affiliation: Fachbereich Mathematik, Geb. 36, Universität des Saarlandes, 66041 Saarbrücken, Germany
Email: thomas.schuster@num.uni-sb.de

DOI: https://doi.org/10.1090/S0025-5718-03-01526-6
Keywords: Approximate inverse, mollification, Radon transform, filtered backprojection
Received by editor(s): September 21, 2001
Published electronically: March 26, 2003
Additional Notes: The second author was supported by Deutsche Forschungsgemeinschaft under grant Lo310/4-1
Article copyright: © Copyright 2003 American Mathematical Society